Publication Type:

Journal Article

Source:

Future Generation Computer Systems, Volume 79, Number Part 1, p.431 - 446 (2018)

URL:

http://www.sciencedirect.com/science/article/pii/S0167739X17311809

Keywords:

Cyber–Physical system, Feature selection technique, Hypervisor, Machine learning, Memory forensic analysis, N-gram feature extraction, Virtual machine introspection

Abstract:

Abstract In order to fulfill the requirements like stringent timing restraints and demand on resources, Cyber–Physical System (CPS) must deploy on the virtualized environment such as cloud computing. To protect Virtual Machines (VMs) in which CPSs are functioning against malware-based attacks, malware detection and mitigation technique is emerging as a highly crucial concern. The traditional VM-based anti-malware software themselves a potential target for malware-based attack since they are easily subverted by sophisticated malware. Thus, a reliable and robust malware monitoring and detection systems are needed to detect and mitigate rapidly the malware based cyber-attacks in real time particularly for virtualized environment. The Virtual Machine Introspection (VMI) has emerged as a fine-grained out-of-VM security solution to detect malware by introspecting and reconstructing the volatile memory state of the live guest Operating System (OS) by functioning at the Virtual Machine Monitor (VMM) or hypervisor. However, the reconstructed semantic details by the VMI are available in a combination of benign and malicious states at the hypervisor. In order to distinguish between these two states, extensive manual analysis is required by the existing out-of-VM security solutions. To address the foremost issue, in this paper, we propose an advanced VMM-based guest-assisted Automated Multilevel Malware Detection System (AMMDS) that leverages both VMI and Memory Forensic Analysis (MFA) techniques to predict early symptoms of malware execution by detecting stealthy hidden processes on a live guest OS. More specifically, the AMMDS system detects and classifies the actual running malicious executables from the semantically reconstructed process view of the guest OS. The two sub-components of the AMMDS are: Online Malware Detector (OMD) and Offline Malware Classifier (OFMC). The OMD recognizes whether the running processes are benign or malicious using its Local Malware Signature Database (LMSD) and online malware scanner and the OFMC classify unknown malware by adopting machine learning techniques at the hypervisor. The AMMDS has been evaluated by executing large real-world malware and benign executables on to the live guest OSs. The evaluation results achieved 100% of accuracy and zero False Positive Rate (FPR) on the 10-fold cross-validation in classifying unknown malware with maximum performance overhead of 5.8%.

Cite this Research Publication

Ajay Kumara and C.D., J., “Automated multi-level malware detection system based on reconstructed semantic view of executables using machine learning techniques at VMM”, Future Generation Computer Systems, vol. 79, pp. 431 - 446, 2018.

207
PROGRAMS
OFFERED
6
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS
  • Amrita on Social Media

  • Contact us

    Amrita Vishwa Vidyapeetham
    Amritanagar, Coimbatore - 641 112
    Tamilnadu, India
    • Fax: +91-422-2686274
    • Coimbatore : +91 (422) 2685000
    • Amritapuri   : +91 (476) 280 1280
    • Bengaluru    : +91 (080) 251 83700
    • Kochi              : +91 (484) 280 1234
    • Mysuru          : +91 (821) 234 3479
    • Contact Details »