Publication Type:

Conference Paper

Source:

Proceedings - 2015 5th International Conference on Advances in Computing and Communications, ICACC 2015, Institute of Electrical and Electronics Engineers Inc., p.434-438 (2015)

ISBN:

9781467369947

URL:

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84965095658&partnerID=40&md5=cb7151627b8cb9a7c478c247469e72ad

Keywords:

Comparative performance analysis, Conformal mapping, Dimensionality reduction, High dimensional datasets, High-dimensional, NLPCA, Real-world datasets, Self organizing maps, Time consumption, Unsupervised learning, Weight initialization

Abstract:

Self Organizing Maps perform clustering of data based on unsupervised learning. It is of concern that initialization of the weight vector contributes significantly to the performance of SOM and since real world datasets being high-dimensional, the complexity of SOM tend to increase tremendously leading to increased time consumption as well. Our work focuses on the analysis of different weight initialization strategies and various dimensionality reduction measures with the intent to make SOM flexible for handling high-dimensional datasets. We use two methods of comparison, one on projected space and another before projection. The datasets used are real world datasets taken from UCI repository. © 2015 IEEE.

Notes:

cited By 0; Conference of 5th International Conference on Advances in Computing and Communications, ICACC 2015 ; Conference Date: 2 September 2015 Through 4 September 2015; Conference Code:120012

Cite this Research Publication

Ha Haripriya, DeviSree, Rb, Pooja, Db, and Prof. Nedungadi, P., “A Comparative Performance Analysis of Self Organizing Maps on Weight Initializations Using different Strategies”, in Proceedings - 2015 5th International Conference on Advances in Computing and Communications, ICACC 2015, 2015, pp. 434-438.

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

207
PROGRAMS
OFFERED
5
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS