Publication Type:

Journal Article


Computational Materials Science, Volume 126, p.400 - 406 (2017)





Abstract A computational method to determine the shielding effectiveness against electromagnetic interference of carbon nanotube (CNTs)-based nanocomposites through modelling of its electrical properties is presented. Specifically, simulations based on Ant Colony Optimization (ACO) were implemented to evaluate the electrical conductivity (σ) of \{CNTs\} (used as a filler in a polymer matrix) that formed electrical network inside a representative cuboid volume of the sample. A pseudo three-dimensional (3D) percolation model was developed to study the effects of random connectivity of \{CNTs\} to one another on the conductivity of nanocomposites. In our approach, both contact and intrinsic resistances were taken into account. The tunneling resistance between \{CNTs\} was also taken into account while dealing with single-walled \{CNTs\} (SWCNTs). A resistor network recognition method that optimizes connective paths was built using \{ACO\} method and conductivity was subsequently computed as a function of \{CNTs\} concentration. Then, the shielding effectiveness was computed using the conductivity data. It is remarkable that the calculated \{SE\} values as a function of frequency of \{EM\} waves at a constant weight percent of \{CNTs\} were in agreement with the experimental data for CNT-based nanocomposites reported in literature.

Cite this Research Publication

S. S. Prabhu, Bhavani, R., Dr. Gireesh K. T., and Dr. T. Rajagopalan, “A computational approach to determine shielding effectiveness of carbon nanotube-based nanocomposites for \EMC\ application”, Computational Materials Science, vol. 126, pp. 400 - 406, 2017.