Publication Type:

Journal Article

Source:

Journal of Science: Advanced Materials and Devices, p.- (2018)

URL:

https://www.sciencedirect.com/science/article/pii/S246821791830025X

Keywords:

Charge transport

Abstract:

Abstract Photo-sensitizers, usually organic dye molecules, are considered to be one of the most expensive components in dye sensitized solar cells (DSSCs). The present work demonstrates a cost effective and high throughput upcycling process on jackfruit rags to extract a natural photo-active dye and its application as a photo-sensitizing candidate on titanium dioxide (TiO2) in DSSCs. The jackfruit derived natural dye (JDND) exhibits a dominant photo-absorption in a spectral range of 350 nm-800 nm with an optical bandgap of ∼1.1 eV estimated from UV-Visible absorption spectroscopic studies. The \{JDND\} in \{DSSCs\} as a major photo-absorbing candidate exhibits a photo-conversion efficiency of ∼1.1 % with short circuit current density and open circuit voltage of 2.2 mA.cm-2 and 805 mV respectively. Further, the results show that concentration of \{JDND\} plays an influential role on photovoltaic performance of the \{DSSCs\} due to the significant change in photo-absorption, exciton generation and electron injection into TiO2. The simple, high throughput method used to obtain \{JDND\} and the resulting \{DSSC\} performance can be considered as potential merits establishing a cost effective excitonic photovoltaic technology.

Cite this Research Publication

A. Ashok, Mathew, S. E., Shivaram, S. B., Dr. Sahadev Shankarappa, Shantikumar V. Nair, and Dr. Mariyappan Shanmugam, “Cost Effective Natural Photo-sensitizer from Upcycled Jackfruit Rags for Dye Sensitized Solar Cells”, Journal of Science: Advanced Materials and Devices, p. -, 2018.