Publication Type:

Conference Proceedings

Source:

International Symposium on Signal Processing and Intelligent Recognition Systems (2017)

Abstract:

Scene classification systems have become an integral part of computer vision. Recent developments have seen the use of deep scene networks based on convolutional neural networks (CNN), trained using millions of images to classify scenes into various categories. This paper proposes the use of one such pre-trained network to classify specific scene categories. The pre-trained network is combined with the simple classifiers namely, random forest and extra tree classifiers to classify scenes into 8 different scene categories. Also, the effect of different color spaces such as RGB, YCbCr, CIEL*a*b* and HSV on the performance of the proposed CNN based scene classification system is analyzed based on the classification accuracy. In addition to this, various intensity planes extracted from the said color spaces coupled with color-to-gray image conversion techniques such as weighted average, and singular value decomposition (SVD) are also taken into consideration and their effects on the performance of the proposed CNN based scene classification system are also analyzed based on the classification accuracy. The experiments are conducted on the standard Oliva Torralba (OT) scene data set which comprises of 8 classes. The analysis of classification accuracy obtained for the experiments conducted on OT scene data shows that the different color spaces and the intensity planes extracted from various color spaces and color-to-gray image conversion techniques do affect the performance of proposed CNN based scene classification system.

Cite this Research Publication

Dr. Govind D., Sowmya, V., Sachin, R., and Dr. Soman K. P., “Dependency of Various Color and Intensity Planes on CNN Based Image Classification”, International Symposium on Signal Processing and Intelligent Recognition Systems. 2017.

207
PROGRAMS
OFFERED
6
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS