Publication Type:

Journal Article

Source:

NanoTrends (Nano Science and Technology Consortium), Volume 11, Number 1, p.18-21 (2011)

Abstract:

Single Walled Carbon Nanotube (SWCNT) is known to have unique thermodynamic and electrical properties which mainly depends upon the chiral index values (n,m). Quantum mechanical modeling and simulation studies were conducted for these samples to characterize the above properties. The energy gap of conducting carbon nano tubes has been found to be negligibly small. Armchair configuration with (n=m) is found to be highly stable. All these samples are found to be conducting. Structures with n and m values (8,7), (7,8),(7,6), (7,2), (6,5), (5,3) (4,5) and (3,5) are found to be unstable and are all semiconductors.

Cite this Research Publication

A. Ranganath, Ashish, G., K Gopal, V., Narayanankutty Karuppath, Gopakumar, D., and P. K. Krishnan Namboori, “Electrical conductivity and thermodynamic stability of single walled carbon nanotube using first principles”, NanoTrends (Nano Science and Technology Consortium), vol. 11, pp. 18-21, 2011.

207
PROGRAMS
OFFERED
5
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
9th
RANK(INDIA):
NIRF 2017
150+
INTERNATIONAL
PARTNERS
  • Amrita on Social Media

  • Contact us

    Amrita Vishwa Vidyapeetham
    Amritanagar, Coimbatore - 641 112
    Tamilnadu, India