Publication Type:

Journal Article

Source:

Biopolymers, Volume 97, Number 7, p.529-538 (2012)

URL:

http://www.scopus.com/inward/record.url?eid=2-s2.0-84859785033&partnerID=40&md5=ab379ba5a3349bc547dae6adcc25696e

Keywords:

8 octanediol co citrate), 8-octanediol-co-citrate), Animals, article, biocompatibility, biodegradation, Biomechanics, Cardiac, Cardiac muscles, Cardiac tissue engineering, Cardiac tissues, Cell Line, cell proliferation, Composite scaffolds, concentration (parameters), controlled study, Cytoskeletal, Degradation behavior, Elastomeric substrates, Elastomers, Electron, Electrospinning, Electrospun composite, Electrospuns, Fourier Transform Infrared, Heart, heart graft, human, human cell, infrared spectroscopy, Lactic acid, Mechanical cues, Mechanical properties, microscopy, molecular weight, myoblast, Myoblast cells, Myoblasts, nanofiber, Nanofibers, Nanofibrous scaffolds, Poly L lactic acid, poly(1, poly(levo lactic acid)co poly(3 caprolactone), Rats, Scaffolds (biology), Scanning, scanning electron microscopy, Spectroscopy, Tensile measurements, Tensile strength, Tissue, tissue engineering, tissue scaffold, unclassified drug, Weight ratios, Young's Modulus

Abstract:

A biocompatible and elastomeric nanofibrous scaffold is electrospun from a blend of poly(1,8-octanediol-co-citrate) [POC] and poly(L-lactic acid) -co-poly-(3-caprolactone) [PLCL] for application as a bioengineered patch for cardiac tissue engineering. The characterization of the scaffolds was carried out by Fourier transform infra red spectroscopy, scanning electron microscopy (SEM), and tensile measurement. The mechanical properties of the scaffolds are studied with regard to the percentage of POC incorporated with PLCL and the results of the study showed that the mechanical property and degradation behavior of the composites can be tuned with respect to the concentration of POC blended with PLCL. The composite scaffolds with POC: PLCL weight ratio of 40:60 [POC/PLCL4060] was found to have a tensile strength of 1.04 ± 0.11 MPa and Young's Modulus of 0.51 ± 0.10 MPa, comparable to the native cardiac tissue. The proliferation of cardiac myoblast cells on the electrospun POC/PLCL scaffolds was found to increase from Days 2 to 8, with the increasing concentration of POC in the composite. The morphology and cytoskeletal observation of the cells also demonstrated the biocompatibility of the POC containing scaffolds. Electrospun POC/PLCL4060 nanofibers are promising elastomeric substrates that might provide the necessary mechanical cues to cardiac muscle cells for regeneration of the heart. © 2012 Wiley Periodicals, Inc.

Notes:

cited By 14

Cite this Research Publication

M. P. Prabhakaran, Nair, A. S., Kai, D., and Ramakrishna, S., “Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering”, Biopolymers, vol. 97, pp. 529-538, 2012.