Publication Type:

Journal Article


Current Cancer Drug Targets, Volume 12, Number 6, p.716-740 (2012)



3, 3 indolemethanol, 3' diindolylmethane, Animals, Anticarcinogenic Agents, antineoplastic agent, Biosynthesis, bortezomib, budesonide, cancer cell


miRNAs are small endogenous non-coding RNAs, approximately 21-nucleotides in length, which are shown to regulate an array of cellular processes such as differentiation, cell cycle, cell proliferation, apoptosis, and angiogenesis which are important in cancer. miRNAs can function as both tumor promoters (oncomiRs) or tumor suppressors by their ability to target numerous biomolecules that are important in carcinogenesis. Aberrant expression of miRNAs is correlated with the development and progression of tumors, and the reversal of their expression has been shown to modulate the cancer phenotype suggesting the potential of miRNAs as targets for anti-cancer drugs. Several chemopreventive phytochemicals like epigallocatechin-3-gallate, curcumin, isoflavones, indole-3-carbinol, resveratrol, and isothiocyanate have been shown to modulate the expression of numerous miRNAs in cancer cells that lead to either abrogation of tumor growth or sensitization of cancer cells to chemotherapeutic agents. This review focuses on the putative role(s) of miRNAs in different aspects of tumorigenesis and at various stages of early drug discovery that makes them a promising class of drug targets for chemopreventive intervention in cancer. We summarize the current progress in the development of strategies for miRNA-based anti-cancer therapies. We also explore the modulation of miRNAs by various cancer chemopreventive agents and the role of miRNAs in drug metabolism. We will discuss the role of miRNAs in cancer stem cells and epithelial-to-mesenchymal transition; and talk about how modulation of miRNA expression relates to altered glycosylation patterns in cancer cells. In addition, we consider the role of altered miRNA expression in carcinogenesis induced by various agents including genotoxic and epigenetic carcinogens. Finally, we will end with a discussion on the potential involvement of miRNAs in the development of cancer chemoresistance. Taken together, a better understanding of the complex role(s) of miRNAs in cancer may help in designing better strategies for biomarker discovery or drug targeting of miRNAs and/or their putative protein targets. © 2012 Bentham Science Publishers.


cited By (since 1996)5

Cite this Research Publication

Ka Neelakandan, Babu, Pa, and Nair, Sab, “Emerging roles for modulation of microRNA signatures in cancer chemoprevention”, Current Cancer Drug Targets, vol. 12, pp. 716-740, 2012.