Publication Type:

Journal Article

Source:

IOP Conference Series: Materials Science and Engineering, Volume 225, Number 1, p.012101 (2017)

URL:

http://stacks.iop.org/1757-899X/225/i=1/a=012101

Abstract:

The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO 2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO 2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO 2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.

Cite this Research Publication

V. Salamon, Senthilkumar D., and Thirumalini, S., “Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO 2 -Nanofluid Coolant”, IOP Conference Series: Materials Science and Engineering, vol. 225, p. 012101, 2017.

207
PROGRAMS
OFFERED
5
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS