Publication Type:

Journal Article

Source:

Applied Medical Informatics, Volume 36, Number 1, p.23–32 (2015)

URL:

http://search.proquest.com/openview/81de1a43bbf333e68ee4084fdda20a42/1?pq-origsite=gscholar

Abstract:

Machine learning techniques will help in deriving hidden knowledge from clinical data which can be of great benefit for society, such as reduce the number of clinical trials required for precise diagnosis of a disease of a person etc. Various areas of study are available in healthcare domain like cancer, diabetes, drugs etc. This paper focuses on heart disease dataset and how machine learning techniques can help in understanding the level of risk associated with heart diseases. Initially, data is preprocessed then analysis is done in two stages, in first stage feature selection techniques are applied on 13 commonly used attributes and in second stage feature selection techniques are
applied on 75 attributes which are related to anatomic structure of the heart like blood vessels of the heart, arteries etc. Finally, validation of the reduced set of features using an exhaustive list of classifiers is done.In parallel study of the anatomy of the heart is done using the identified features and the characteristics of each class is understood. It is observed that these reduced set of features are anatomically relevant. Thus, it can be concluded that, applying machine learning techniques on clinical data is beneficial and necessary.

Cite this Research Publication

D. Vinitha, Dr. Deepa Gupta, and Khare, S., “Exploration of Machine Learning Techniques for Cardiovascular Disease”, Applied Medical Informatics, vol. 36, pp. 23–32, 2015.

207
PROGRAMS
OFFERED
5
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS