Publication Type:

Journal Article


Journal of Theoretical and Applied Information Technology, Asian Research Publishing Network, Volume 88, Number 3, p.535-540 (2016)



Retinal blood vessel Extraction in retinal images allows early diagnosis of disease and is useful in detecting ocular disorders and helps in laser surgery. Automating this process provides several benefits including minimizing subjectivity and eliminating a painstaking. This paper proposes an automated retinal blood vessel segmentation approach based on Fuzzy C-Means (FCM) clustering and then performed extraction using Artificial Bee-colony (ABC) to improve the accuracy of segmented image. FCM allocate the values of membership to the pixels instead of separating the pixels as in hard clustering problem and the clustering is optimized using ABC swarm based optimization algorithm, finally the system classify the images according to the level of damage in blood vessel using support vector machine (SVM). The performance was evaluated on DRIVE database and an accuracy of 96.35% was obtained. © 2005 - 2016 JATIT & LLS. All rights reserved.


cited By 0

Cite this Research Publication

K. Kavya, Dechamma, M. G., and Kumar, B. J. Santhosh, “Extraction of retinal blood vessel using Artificial Bee-colony optimization”, Journal of Theoretical and Applied Information Technology, vol. 88, pp. 535-540, 2016.