Publication Type:

Journal Article

Source:

Silicon, Springer Netherlands, p.1-12 (2018)

URL:

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041135771&doi=10.1007%2fs12633-017-9657-3&partnerID=40&md5=4e0a8eb577251326516b2baaa6cdfabc

Keywords:

Centrifugal casting, Copper alloys, Dry sliding wear, Fabrication, Functionally graded composites, Hardness, Horizontal centrifugal castings, Mechanical and tribological properties, Metallurgical microscope, Nickel alloys, scanning electron microscopy, Severe plastic deformations, Signal to noise ratio, Silicon alloys, Tensile, Tensile strength, Tin alloys, Tribology, Wear mechanisms, Wear of materials, Wear resistance

Abstract:

<p>The objective of this research is to fabricate a functionally graded Cu/SiC composite (Øout100 × Øin85 × 100 mm) using a horizontal centrifugal casting technique and to examine its mechanical and dry sliding wear characteristics. Microstructure of the composite was observed at outer (1 mm), middle (8 mm) and inner (14 mm) regions using a metallurgical microscope and results showed that the inner region had a high concentration (35%) of reinforcement particles compared to the other two regions. Mechanical properties were tested along the radial direction of the composite and results showed that maximum tensile strength and hardness were found to be 341 MPa and 280 HV respectively, at the inner region of the composite. Fractograpy examination revealed that the outer and inner regions were fractured by ductile and brittle modes of failures, respectively. The dry sliding wear tests were performed only at the inner region of the composite with selected parameters of load (10–30 N), sliding distance (500–1500 m) and sliding velocity (1–3 m/s) using a pin-on-disc tribometer. Analysis of variance and signal-to-noise ratio were used to study the effects of parameters on the wear rate of the composite and it was found that the load (54%) had highest influence followed by sliding distance (18.2%) and sliding velocity (3.7%). Worn surfaces were observed by a scanning electron microscope and it was confirmed that mild wear, severe plastic deformation, ploughing, delamination and wear debris were important wear mechanisms at different sliding conditions. Hence, this composite is suggested for use in bearings and bushes application, where the wear resistance is a primary consideration. © 2018 Springer Science+Business Media B.V.</p>

Notes:

cited By 0; Article in Press

Cite this Research Publication

R. N, Teja, K., Rahul, K., and A, S., “Fabrication of Cu-Sn-Ni /SiC FGM for Automotive Applications: Investigation of its Mechanical and Tribological Properties”, Silicon, pp. 1-12, 2018.

207
PROGRAMS
OFFERED
6
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS
  • Amrita on Social Media

  • Contact us

    Amrita Vishwa Vidyapeetham,
    Amritanagar,
    Coimbatore - 641 112,
    Tamil Nadu, India.
    • Fax                 : +91 (422) 268 6274
    • Coimbatore   : +91 (422) 268 5000
    • Amritapuri    : +91 (476) 280 1280
    • Bengaluru     : +91 (080) 251 83700
    • Kochi              : +91 (484) 280 1234
    • Mysuru          : +91 (821) 234 3479
    • Chennai         : +91 (44 ) 276 02165
    • Contact Details »