Publication Type:

Journal Article

Source:

International Journal of Mechanics and Mechanical Engineering, Volume 23, p.297-302 (2019)

Abstract:

Machining is the most widely used process inmanufacturing, and tool wear plays a signicant role inmachining eciency and eectiveness. There is a continu-ous requirement to manufacture high-quality products ata lower cost. Many past researches show that variations intool geometry aect the cutting forces signicantly. The in-crease in cutting forces leads to excessive vibrations in thesystem, giving a poor surface nish to the machined prod-uct. In this work, a 2D coupled thermo-mechanical modelis developed using Abaqus/Explicit to predict the cuttingforces during turning of mild steel. Johnson–Cook materialmodel along with damage model has been used to denethe material behavior. Coulomb’s friction model is consid-ered for dening the interaction between the tool and thework piece. Metal cutting process is simulated for dierentsets of cutting conditions and compared with experimen-tal results. The nite element method results correlate wellwith the experimental results.

Cite this Research Publication

S. Saivenkatesh, Ramkumar, A., Blalakumhren, A. P., K. Marimuthu, P., and Dr. Saimurugan M., “Finite element simulation and experimental validation of the effect of tool wear on cutting forces in turning operation”, International Journal of Mechanics and Mechanical Engineering, vol. 23, pp. 297-302, 2019.