Publication Type:

Journal Article

Source:

Microchimica Acta, Springer-Verlag Wien (2015)

URL:

https://www.scopus.com/record/display.uri?eid=2-s2.0-84941940224&origin=resultslist&sort=plf-f&

Abstract:

A nanocomposite consisting of reduced graphene oxide decorated with palladium-copper oxide nanoparticles (Pd-CuO/rGO) was synthesized by single-step chemical reduction. The morphology and crystal structure of the nanocomposite were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction analysis. A 3-electrode system was fabricated by screen printing technology and the Pd-CuO/rGO nanocomposite was dropcast on the carbon working electrode. The catalytic activity towards glucose in 0.2 M NaOH solutions was analyzed by linear sweep voltammetry and amperometry. The steady state current obtained at a constant potential of +0.6 V (vs. Ag/AgCl) showed the modified electrode to possess a wide analytical range (6 μM to 22 mM), a rather low limit of detection (30 nM), excellent sensitivity (3355 μA∙mM−1∙cm−2) and good selectivity over commonly interfering species and other sugars including fructose, sucrose and lactose. The sensor was successfully employed to the determination of glucose in blood serum. [Figure not available: see fulltext.] © 2015 Springer-Verlag Wien

Notes:

cited By 0; Article in Press

Cite this Research Publication

K. Dhara, Dr. Ramachandran T., Dr. Bipin G. Nair, and Dr. Satheesh Babu T. G., “Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles”, Microchimica Acta, 2015.

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

207
PROGRAMS
OFFERED
6
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS