Publication Type:

Journal Article


Journal of Computer Science, Volume 8, Number 10, p.1759-1768 (2012)



<p>The study represents a novel approach taken towards car detection, feature extraction and classification in a video. Though many methods have been proposed to deal with individual features of a vehicle, like edge, license plate, corners, no system has been implemented to combine features. Combination of four unique features, namely, color, shape, number plate and logo gives the application a stronghold on various applications like surveillance recording to detect accident percentage(for every make of a company), authentication of a car in the Parliament(for high security), learning system(readily available knowledge for automobile tyro enthusiasts) with increased accuracy of matching. Video surveillance is a security solution for government buildings, facilities and operations. Installing this system can enhance existing security systems or help start a comprehensive security solution that can keep the building, employees and records safe. The system uses a Haar cascaded classifier to detect a car in a video and implements an efficient algorithm to extract the color of it along with the confidence rating. An gadabouts trained classifier is used to detect the logo (Suzuki/Toyota/Hyunadai) of the car whose accuracy is enhanced by implementing SURF matching. A combination of blobs and contour tracing is applied for shape detection and model classification while number plate detection is performed in a smart and efficient algorithm which uses morphological operations and contour tracing. Finally, a trained, single perceptron neural network model is integrated with the system for identifying the make of the car. A thorough work on the system has proved it to be efficient and accurate, under different illumination conditions, when tested with a huge dataset which has been collected over a period of six months. © 2012 Science Publications.</p>


cited By (since 1996)0

Cite this Research Publication

TaSenthil Kumar and Sivanandam, S. Nb, “An improved approach for detecting car in video using neural network model”, Journal of Computer Science, vol. 8, pp. 1759-1768, 2012.