Publication Type:

Journal Article

Source:

Desalination and Water Treatment, Desalination Publications, Volume 80, p.276-287 (2017)

URL:

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027004728&doi=10.5004%2fdwt.2017.20912&partnerID=40&md5=9845ce1d86a32a2fb080dd79a37e544e

Keywords:

Lantana, Lantana camara

Abstract:

The study focuses on exploring the binding mechanisms of Ni(II) ions and determining the maximum uptake capacity of the biosorbent. The fresh biosorbent was subjected to sulfuric acid treatment to enhance the porosity and to introduce the specific sulfonic groups onto the surfaces of the biosorbent. Characterization techniques like scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and elemental analysis were utilized to understand the biosorption mechanisms. The results exhibit the likelihood of both physical and chemical interactions of the biosorbent with the Ni(II) ions. Out of the isotherm models investigated, Langmuir model presented a better fit to the experimental data favoring monolayer adsorption. In addition, intra-particle diffusion model revealed the possibility of both pore and film diffusion. Compared with pseudo–first-order model, pseudo-second-order kinetic model obtained a better fit. The outcome of the thermodynamic studies showed the exothermic nature of the biosorption process with a negative enthalpy value (ΔH°). Additionally, it is also significant to note that the adsorption of Ni(II) ions was favored only at lower temperatures. A maximum removal efficiency of 97% was observed for 25 mg/L Ni(II) solution. Moreover, the results of the desorption studies using 0.3 N HCl were also encouraging, with a removal efficiency of almost 91%. © 2017 Desalination Publications. All rights reserved.

Notes:

cited By

Cite this Research Publication

Nithya K., Sathish, A., Kumar, P. S., and Ramachandran, T., “An insight into the prediction of biosorption mechanism, and isotherm, kinetic and thermodynamic studies for Ni(II) ions removal from aqueous solution using acid treated biosorbent: The Lantana camara fruit”, Desalination and Water Treatment, vol. 80, pp. 276-287, 2017.

207
PROGRAMS
OFFERED
6
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS
  • Amrita on Social Media

  • Contact us

    Amrita Vishwa Vidyapeetham
    Amritanagar, Coimbatore - 641 112
    Tamilnadu, India
    • Fax: +91-422-2686274
    • Coimbatore : +91 (422) 2685000
    • Amritapuri   : +91 (476) 280 1280
    • Bengaluru    : +91 (080) 251 83700
    • Kochi              : +91 (484) 280 1234
    • Mysuru          : +91 (821) 234 3479
    • Contact Details »