Publication Type:

Journal Article

Source:

Scientific Reports 5 (2015)

URL:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585730/

Abstract:

Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.

Cite this Research Publication

Keyan Bennaceur, Schmid, B. A., Gaucher, S., Laroche, D., Lilly, M. P., Reno, J. L., West, K. W., Pfeiffer, L. N., and Gervais, G., “Mechanical Flip-Chip for Ultra-High Electron Mobility Devices”, Scientific Reports 5, 2015.

207
PROGRAMS
OFFERED
6
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS