Publication Type:

Journal Article

Source:

International Journal of Concrete Structures and Materials, Korea Concrete Institute, Volume 12, Number 1 (2018)

URL:

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044318260&doi=10.1186%2fs40069-018-0246-7&partnerID=40&md5=0a38d8fc4b66ab879934320f0c996ec8

Keywords:

Compressive strength, Concretes, construction industry, Engineering properties, Hardened properties, Hardening, High performance concrete, Kitchens, Parametric variation, Random kitchen sinks, Regularized Least Squares, Rheological property, Segregation resistances, Self compacting concrete, Superplasticizer dosages

Abstract:

High performance concrete especially self compacting concrete (SCC) has got wide popularity in construction industry because of its ability to flow through congested reinforcement without segregation and bleeding. Even though European Federation of National Associations Representing for Concrete (EFNARC) guidelines are available for the mix design of SCC, large number of trials are required for obtaining an SCC mix with the desired engineering properties. The material and time requirement is more to conduct such large number of trials. The main objective of the study presented in this paper is to demonstrate use of regularized least square algorithm (RLS) along with random kitchen sink algorithm (RKS) to effectively predict the fresh and hardened stage properties of SCC. The database for testing and training the algorithm was prepared by conducting tests on 40 SCC mixes. Parametric variation in the SCC mixes were the quantities of fine and coarse aggregates, superplasticizer dosage, its family and water content. Out of 40 test results, 32 results were used for training and 8 set results were used for testing the algorithm. Modelling of both fresh state properties viz., flowing ability (Slump Flow), passing ability (J Ring), segregation resistance (V funnel at 5 min) as well as hardened stage property (compressive strength) of the SCC mix was carried out using RLS and RKS algorithm. Accuracy of the model was checked by comparing the predicted and measured values. The model could accurately predict the properties of the SCC within the experimental domain. © 2018, The Author(s).

Notes:

cited By 0

Cite this Research Publication

Aravind J. Prakash, Dhanya Sathyan, Dr. Anand K. B., and B. Premjith, “Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm”, International Journal of Concrete Structures and Materials, vol. 12, 2018.