Publication Type:

Journal Article


International Journal of Advanced Manufacturing Technology, Volume 27, Number 7-8, p.804-815 (2006)



Flow shop scheduling, Genetic algorithms, Makespan, Multi-objective genetic algorithms, Problem solving, Scheduling, Total flow time


In this paper the problem of permutation flow shop scheduling with the objectives of minimizing the makespan and total flow time of jobs is considered. A Pareto-ranking based multi-objective genetic algorithm, called a Pareto genetic algorithm (GA) with an archive of non-dominated solutions subjected to a local search (PGA-ALS) is proposed. The proposed algorithm makes use of the principle of non-dominated sorting, coupled with the use of a metric for crowding distance being used as a secondary criterion. This approach is intended to alleviate the problem of genetic drift in GA methodology. In addition, the proposed genetic algorithm maintains an archive of non-dominated solutions that are being updated and improved through the implementation of local search techniques at the end of every generation. A relative evaluation of the proposed genetic algorithm and the existing best multi-objective algorithms for flow shop scheduling is carried by considering the benchmark flow shop scheduling problems. The non-dominated sets obtained from each of the existing algorithms and the proposed PGA-ALS algorithm are compared, and subsequently combined to obtain a net non-dominated front. It is found that most of the solutions in the net non-dominated front are yielded by the proposed PGA-ALS.


cited By 50

Cite this Research Publication

Ta Pasupathy, Rajendran, Ca, and Suresh, R. Kb, “A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs”, International Journal of Advanced Manufacturing Technology, vol. 27, pp. 804-815, 2006.