Publication Type:

Journal Article


Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volume 6746 LNAI, Chiang Mai, p.155-165 (2011)





Active contour algorithms, Active contours, Algorithms, Bayesian classifier, Bayesian model, Bayesian networks, Boundary detection, Cardiac chambers, Classification methods, Classifier models, Clinical decision, Color Doppler, Data mining tasks, Echocardiographic images, echocardiography, Ejection fraction, Health care, Healthcare environments, Hospital data processing, Image features, Image processing technique, Image segmentation, K-means, k-Means algorithm, Knowledge base, Knowledge based systems, Left ventricles, Mitral valves, On-the-fly, Orifice area, Patient data, Relational Database, Second phase, SQL, SQL query, State of the art


Generally patient data in healthcare environments exist in relational databases. Classification of echocardiographic images is an important data mining task that helps hospitals without transferring the data in any form. This paper proposes a novel method to accomplish this task using naïve Bayesian model via SQL. The proposed method has two phases. The first phase builds a knowledge base using many normal and abnormal subjects and the second phase uses this knowledge to categorize an unseen subject into appropriate class. The image features such as cardiac chamber dimensions (specifically Left Ventricle - LV), Ejection Fraction, Mitral valve (MV) orifice area, etc., are computed by first segmenting the image by employing advanced image processing techniques. For instance, to segment echo images we employ an efficient SQL based Fast K-Means algorithm combined with a greedy active contour algorithm for accurate boundary detection. Additional features such as textural, statistical, and histogram are computed and added to the classifier model by analyzing color Doppler echo images to strengthen the classifier accuracy. Our SQL based naïve Bayesian classifier model is built with 7 schema, simple yet efficient SQL queries and thus providing an accurate classification of patients as normal or abnormal. The model is trained with 112 patient data and we believe that the clinical decision is simplified and can happen on-the-fly. Experimental results presented in this paper show an increased accuracy of 87.48% against the other state-of-the art segmentation and classification methods reported. © 2011 Springer-Verlag.


cited By (since 1996)0; Conference of org.apache.xalan.xsltc.dom.DOMAdapter@7231d00a ; Conference Date: org.apache.xalan.xsltc.dom.DOMAdapter@24517b18 Through org.apache.xalan.xsltc.dom.DOMAdapter@61687748; Conference Code:87391

Cite this Research Publication

Sa Nandagopalan, Adiga, B. Sb, Sudarshan, T. S. Ba, Dhanalakshmi, Cc, and Manjunath, C. Nd, “A naïve-Bayesian methodology to classify echo cardiographic images through SQL”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6746 LNAI, pp. 155-165, 2011.