Publication Type:

Journal Article

Source:

IEEE Transactions on Antennas and Propagation, Volume 61, Number 5, p.2708-2713 (2013)

URL:

http://www.scopus.com/inward/record.url?eid=2-s2.0-84877306831&partnerID=40&md5=2e2860e5a0c6f17e676de598186d6df1

Keywords:

Asymptotic formula, Average relative error, Bessel functions, Complex argument, Expansion, Extended range, Integer order, Lower limits, Scattering problems, Sinusoidal functions

Abstract:

We present accurate trigonometric expansions of Bessel functions of first kind and integer order for complex arguments of the form Jv(z)= ∑Kαk,S(βkz) , where α k and β k are constants and S is a sinusoidal function. Using the new expansions, varying levels of accuracy and range of applicability can be achieved by varying the number of terms in the expansions. For example, a four term expansion of J0(z) yields an average relative error of <.1% for z≤2π and same accuracy is achieved for an eight term expansion for an extended range ≤ 5π. Further, a phase and amplitude corrected large argument asymptotic formula is studied such that, the lower limit of its usage is reduced to medium magnitude ranges of arguments. The new set of formulas can not only be incorporated into math libraries very easily but also be useful for treatment of radiation and scattering problems involving Bessel functions. © 1963-2012 IEEE.

Notes:

cited By (since 1996)0

Cite this Research Publication

Dr. Dhanesh G. Kurup and Koithyar, A., “New expansions of bessel functions of first kind and complex argument”, IEEE Transactions on Antennas and Propagation, vol. 61, pp. 2708-2713, 2013.

207
PROGRAMS
OFFERED
5
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS