Publication Type:



officie of Naval Research (2008)


A conceptual Fischer-Tropsch (FT) based process is proposed for converting synthesis gas to C9 C16 hydrocarbons suitable for Navy use as synthetic JP5 fuel. We shall develop an advanced FT catalyst selective for C5-C8 olefins that will be subsequently dimerized to C10-C16; optionally, the process will include product upgrading, e.g., partial reduction. Phase I will investigate in parallel two crucial issues: (1) Development of a suitable FT catalyst based on zeolite supported ruthenium (at Eltron), and (2) Design of a novel FT multi-channel reactor (MCR) with ultra-efficient heat removal capability for near-isothermal operation at relatively low temperature and high pressure (at Florida Institute of Technology). The developed catalyst will first be tested for its potential in the proposed performance using a packed-bed mini-reactor with highly efficient heat removal; initial MCR testing will follow. Phase II will investigate full operation of the MCR, the dimerization reaction, and product separation, recycle and upgrading; more catalyst development will include aging and regeneration studies in addition to optimization, full characterization, and scale-up. Successful Phase I and II will lead to Phase III -- building and operating a fully-integrated prototype JP5 FT mini-plant based on syngas from natural gas reforming.

Cite this Research Publication

P. Jennings, Dr. Udaya Bhaskar Reddy Ragula, and Dutta, S., “Selective Fischer-Tropsch Catalyst for Producing C9-C16 Hydrocarbons”, 2008.