Publication Type:

Journal Article

Source:

International Journal of Hydrogen Energy, Elsevier Ltd (2017)

URL:

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021910783&doi=10.1016%2fj.ijhydene.2017.03.093&partnerID=40&md5=c06abaf7e0a546ac1e48d32902254538

Keywords:

Binary alloys, Bins, Charge transfer coefficient, Electrochemical hydrogen storage properties, Electrochemical impedance, Equilibrium constants, Galvanostatic Intermittent Titration Techniques, Hydrides, Hydrogen, Hydrogen storage, Hydrogen storage alloys, Hydrogen storage capacities, Hydrogenation, Hydrogenation reactions, Magnesium alloys, Mechanical alloying, Metal hydrides, Mg-based hydrogen storage alloys, Nickel, Nickel metal hydride batteries, Rate constants, Silicon alloys, Storage (materials), Titanium alloys

Abstract:

Mg-based hydrogen storage alloys are promising candidates for many hydrogen storage applications because of the high gravimetric hydrogen storage capacity and favourable (de)hydrogenation kinetics. In the present study we have investigated the synthesis and electrochemical hydrogen storage properties of metastable binary MgyTi1-y (y = 0.80-0.60) and ternary Mg0.63Ti0.27X0.10 (X = Ni and Si) alloys. The preparation of crystalline, single-phase, materials has been accomplished by means of mechanical alloying under controlled atmospheric conditions. Electrodes made of ball-milled Mg0.80Ti0.20 powders show a reduced hydrogen storage capacity in comparison to thin films with the same composition. Interestingly, for a Ti content lower than 30 at.% the reversible storage capacity increases with increasing Ti content to reach a maximum at Mg0.70Ti0.30. The charge transfer coefficients (α) and the rate constants (K1 and K2) of the electrochemical (de)hydrogenation reaction have been obtained, using a theoretical model relating the equilibrium hydrogen pressure, electrochemically determined by Galvanostatic Intermittent Titration Technique (GITT), and the exchange current. The simulation results reveal improved values for Mg0.65Ti0.35 compared to those of Mg0.80Ti0.20. The addition of Ni even more positively affects the hydrogenation kinetics as is evident from the increase in exchange current and, consequently, the significant overpotential decrease. © 2017 Hydrogen Energy Publications LLC.

Notes:

cited By 0; Article in Press

Cite this Research Publication

Dr. Thirugnasambandam G. Manivasagam, Iliksu, M., Danilov, D. L., and Notten, P. H. L., “Synthesis and electrochemical properties of binary MgTi and ternary MgTiX (X = Ni, Si) hydrogen storage alloys”, International Journal of Hydrogen Energy, 2017.

207
PROGRAMS
OFFERED
6
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS