Publication Type:

Journal Article

Source:

Advanced Studies in Contemporary Mathematics (Kyungshang), Volume 20, Number 3, p.437-456 (2010)

URL:

http://www.scopus.com/inward/record.url?eid=2-s2.0-77955534810&partnerID=40&md5=168bd7cdf5cc3c0b9862a887fb5350f0

Abstract:

{This paper is concerned with curved boundary triangular element having one curved side and two straight sides. The curved element considered here is the 36-node (septic) triangular element. On using the isoparametric coordinate transformation, the curved triangle in the global (x,y) coordinate system is mapped into a standard triangle: {(ξ, & etal)/0 ≤ ξ,η ≤ l,ξ+ η ≤ 1} in the local coordinate system (ξ,η). Under this transformation curved boundary of this triangular element is implicitly replaced by septic arc. The equation of this arc involves parameters, which are the coordinates of points on the curved side. This paper deduces relations for choosing the parameters in septic arc in such a way that the arc is always a parabola which passes through four points of the original curve, thus ensuring a good approximation. The point transformations which are thus determined with the above choice of parameters on the curved boundary and also in turn the other parameters inthe interior of curved triangle will serve as a powerful subparametric coordinate transformation for higher order curved triangular elements with one curved side and two straight sides. We have considered an application example, which consists of the quarter ellipse: {(x, y)/x = 0

Notes:

cited By (since 1996)0

Cite this Research Publication

VaKesavulu Naidu and .V.Nagaraja, K., “The use of parabolic arc in matching curved boundary by point transformations for septic order triangular element and its applications”, Advanced Studies in Contemporary Mathematics (Kyungshang), vol. 20, pp. 437-456, 2010.