Publication Type:

Journal Article


Journal of Materials Engineering and Performance, Volume 20, Number 7, p.1271–1277 (2011)



Biomaterials, corrosion, EIS, SBF solution, SEM, β-Ti alloy


Ti-15Mo ($\beta$-Ti) alloy was subjected to chemical followed by thermal treatment for the enhancement of in vitro bioactivity and corrosion resistance. The surface-modified specimens were characterized using scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDAX). The results indicated the formation of nanoporous layer and flake-like structure developed during chemical and subsequent thermal treatments. The in vitro bioactivity of the surface-treated $\beta$-Ti alloy was evaluated by immersing in simulated body fluid (SBF) solution. The formation of apatite particles was confirmed using Fourier transform-infrared spectroscopy, SEM, and EDAX analyses. Moreover, the electrochemical behavior of surface-modified specimens in SBF solution was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy. The results revealed that the surface-modified specimens exhibited higher potential value and lower current density when compared to untreated specimen. The EIS studies showed the formation of new layer, indicating the growth of apatite-like particles.

Cite this Research Publication

Y. Sasikumar, Dr. Karthega M., and Rajendran, N., “In Vitro Bioactivity of Surface-Modified $\beta$-Ti Alloy for Biomedical Applications”, Journal of Materials Engineering and Performance, vol. 20, pp. 1271–1277, 2011.