Project Incharge: 
Jayalekshmi H
Co-Project Incharge: 
Athira P S, Deepthi M Nair, Dhanya Krishnan, Divya N, Gayathri Gopinathan, Gayathri suresh, Geethika, Jinty Sukumaran, Jyolsana Jose, Lathika G.
Saturday, January 1, 2011 to Monday, May 30, 2011
School of Biotechnology

Biosurfactants are microbial metabolites with the typical amphiphilic structure of a surfactant, where the hydrophobic moiety is either a long-chain fatty acid, hydroxyl fatty acid, or α-alkyl-β-hydroxy fatty acid and the hydrophilic moiety can be a carbohydrate, an amino acid, a cyclic peptide, a phosphate, a carboxylic acid, or alcohol, among others. The major classes of low-mass surfactants include glycolipids, lipopeptides and phospholipids, whereas high-mass surfactants include polymeric and particulate surfactants. Most biosurfactants are either anionic or neutral and the hydrophobic moiety is based on long-chain fatty acids or fatty acid derivatives, whereas the hydrophilic portion can be a carbohydrate, amino acid, phosphate or cyclic peptide. Biosurfactants can be classified by their chemical composition and their origin. Biosurfactants are grouped into three categories of origin: microbial derived surfactants, animal-derived surfactants and plant-derived biosurfactants. In this study it is possible to isolate two potent producer of biosurfactants , interestingly from two very cheaper resources - oil contaminated soil and contaminated water. The beneficial property of biosurfactant production make the strain an efficient bioremediation tool for various environmental application. All the properties of these biosurfactant producing strains were compared with different strains of P.aeruginosa which is a known producer of biosurfactant. Simultaneously the biosurfactant produced by all the strain shows substantial antimicrobial activity. Hence this can be harnessed for the treatment of various pathogenic infections and represent greater significance in future biomedical applications.