August, 2019

M. Sc. NANOBIOTECHNOLOGY (2019)

The M. Sc. Nano biotechnology is a course designed for Bachelors students to understand in depth the science behind “nano” and to explore in depth the application of nanosciences in the biomedical area. Such applications include new implant technologies, regenerative medicine, new nanomedicines to combat cancer and drug resistance, targeted medicines for treatment with reduced side effects, diagnostic technologies using nanomaterials etc. To gain strength in this new area the course covers in depth nanomaterials and their properties, synthesis of nanomaterials, molecular and cell biology, computational biology, and medical core courses such as immunology and physiology.

The program also offers laboratory exposure on nanomaterial synthesis, characterization of nanomaterials as well as in cell culture, animal experiments. The highlight of this program is a full one year intensive research experience whereby the student completes a thesis in a topic in nanomedicines, diagnosis, drug delivery, tissue engineering, and regenerative medicine.
Curriculum

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>LTP</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MA613</td>
<td>FC</td>
<td>Statistical Data Analysis</td>
<td>101</td>
<td>2</td>
</tr>
<tr>
<td>18MM621</td>
<td>FC</td>
<td>Immunology</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>18MM601</td>
<td>FC</td>
<td>Cell Biology</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>18MM602</td>
<td>FC</td>
<td>Basics in Human Physiology and Pathology</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>18NS621</td>
<td>SC</td>
<td>Science and Properties of Nanomaterials</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>18NS622</td>
<td>SC</td>
<td>Nanomaterials Synthesis</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>18HU604</td>
<td>HU</td>
<td>Amrita Values Programme</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>18HU602</td>
<td>H U</td>
<td>Career Competency-I</td>
<td>P/F</td>
<td></td>
</tr>
<tr>
<td>18NS623</td>
<td>SC</td>
<td>Cell Culture and Animal Lab</td>
<td>101</td>
<td>2</td>
</tr>
<tr>
<td>18NS624</td>
<td>SC</td>
<td>Lab: Nanomaterials Lab-I</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>LTP</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18NS602</td>
<td>FC</td>
<td>Pharmacokinetics and Pharmacodynamics</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>18NS606</td>
<td>FC</td>
<td>Bioinformatics and Structure based Drug Design</td>
<td>202</td>
<td>4</td>
</tr>
<tr>
<td>18NS604</td>
<td>FC</td>
<td>Regenerative Medicine</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>18NS605</td>
<td>FC</td>
<td>Biofactors in Tissue Regeneration</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>18NS625</td>
<td>SC</td>
<td>Characterization of Nanomaterials</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>18NS626</td>
<td>SC</td>
<td>Polymeric Nanomaterials</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>18NS627</td>
<td>SC</td>
<td>Nanomedicine and Nanotoxicology</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>18NS628</td>
<td>SC</td>
<td>Drug Delivery Systems</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>18HU603</td>
<td>HU</td>
<td>Career Competency-II</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>18NS629</td>
<td>SC</td>
<td>Lab: Nanomaterials Lab-II</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>LTP</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18RM601</td>
<td>FC</td>
<td>Ethics in Research and Research Methodology</td>
<td>101</td>
<td>2</td>
</tr>
<tr>
<td>18NS630</td>
<td>SC</td>
<td>Nanosystems in Medical Diagnostics</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>18NS631</td>
<td>SC</td>
<td>Scaffolds in Tissue Regeneration</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>18NS796</td>
<td></td>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>LTP</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18NS797</td>
<td>P</td>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Overall Total Credits 70
FIRST SEMESTER

18MA613 STATISTICAL DATA ANALYSIS 1-0-1-2

Introduction to Statistics-Need for Statistical Methods –Their uses and Misuses, Types of Variables, Data collection Methods, Population and Sample.

Descriptive Data Analysis Methods- Statistical Tables, Diagrams & Graphs, Measures of Averages, Measures of Dispersion, Correlation Analysis Methods, Regression Analysis Methods.

Tests of Significance of Statistical Hypotheses- Concept of Statistical Hypotheses –Null and Alternative hypotheses, Type I and Type II errors, Significance level, Critical region and Power of a test , P- value and its interpretation; Large and Small Sample Test – Normal test, Student’s ‘t’ test, Chi-square tests, Analysis of variance & Non parametric methods.

Nonparametric methods-Non-parametric methods for estimation, Methods for tests of significance for the independent and correlated samples, Nonparametric Methods for more than two populations.

Multivariate analysis Methods- Principles of Multivariate analysis, Multivariate regression analysis, Multivariate logistic regression analysis.

TEXT BOOKS/REFERENCES:

18MM621 IMMUNOLOGY 3-0-0-3

Basic concepts in immunology: Cells and organs of the immune system, Principles of innate and adaptive immunity. The effector mechanisms of immunity, The complement system and innate immunity. The induced responses of innate immunity; Pattern recognition by cells of the innate immune system, Induced innate responses to infection.

Antigen Recognition by B-cell and T-cell Receptors: The structure of a typical antibody molecule, The interaction of the antibody molecule with specific antigen, Antigen recognition by T cells. Antigen presentation to T lymphocytes: The generation of α β T-cell receptor ligands, The major histocompatibility complex and its function, Generation of ligands for unconventional T-cell subsets.

Development of B and T lymphocytes: Development of B lymphocytes, Development of T lymphocytes, Positive and negative selection of T cells.

T cell mediated Immunity: Development and function of secondary lymphoid organs, Priming of naive T cells by pathogen-activated dendritic cells, General properties of effector T cells and their cytokines, T-cell-mediated cytotoxicity.

The humoral immune response: B-cell activation by antigen and helper T cells, The distributions and functions of immunoglobulin classes, The destruction of antibody-coated pathogens via Fc receptors.
Integrated dynamics of innate and adaptive immunity: Integration of innate and adaptive immunity in response to specific types of pathogens, Effector T cells augment the effector functions of innate immune cells, Immunological memory.

Manipulation of the immune response: Treatment of unwanted immune responses, Using the immune response to attack tumors, Fighting infectious diseases with vaccination.

Modulating the immune system through nanotechnology: Nanoparticles and the immune system, Nanoscale immune activation, Nanotechnology in vaccination, Nanoparticle-based vaccine carriers, Nanotechnology and immunosuppression, Nanoparticles as vehicles for immunosuppressants.

TEXT BOOK:

REFERENCE:

18MM601 CELL BIOLOGY 3-0-0-3

Cell chemistry and biosynthesis: the chemical components of a cell; Membrane structure: the lipid bilayer, membrane proteins; Membrane transport of small molecules and electrical properties of membranes: principles of membrane transport, active membrane transport, ion channels; Intracellular compartments and protein sorting: compartmentalization of cells, the transport of molecules between intracellular compartments; Intracellular vesicular traffic: endocytosis, exocytosis, molecular mechanisms; Cell signaling: general principles, signaling through GPCRs and enzyme-coupled surface receptors; Cytoskeleton: self-assembly and dynamic structure of cytoskeletal filaments, molecular motors; Cell cycle: an overview, cell cycle regulation; Apoptosis: cell death, extrinsic and intrinsic pathways; Cell junctions, cell adhesion and extracellular matrix: cadherins and cell-cell adhesion, tight junctions, passageways from cell to cell, integrins and cell-matrix adhesion, extracellular matrix.

TEXT BOOK:

REFERENCE:

18MM602 BASICS IN HUMAN PHYSIOLOGY AND PATHOLOGY 4-0-0-4

Physiology: This module pertains to the study and understanding of organ-based physiological processes in the human body during homeostasis. The module covers the following topics: Body water and distribution, regulation of water within extracellular, transcellular and intracellular compartments, determination of compartmental fluid volumes, blood and lymphatic system, function-regulation of the cardiovascular system, the cardiac cycle, hepato-biliary system, pancreas physiology, regulation and processes involved in urine formation, the musculoskeletal system and calcium regulation, control of respiration, lung volumes and flow, nervous system – generation of action potential, role of voltage gated ion channels, synapse physiology, and basics of neural networks in brain, special senses, and reproductive physiology.

Pathology: This module is divided into two segments: The first segment covers the basic pathological processes such as inflammation, compensatory cellular changes – Hypertrophy, hyperplasia, atrophy and metaplasia, fluid handling
disturbances, malignant cellular changes, immunological & metabolic responses, and healing. The second segment covers the study of diseases based on organ systems: Cardiovascular, pulmonary, gastrointestinal, hepato-biliary, renal, musculoskeletal and nervous system disorders. Changes at the level of tissues and cells will be studied within each disease. Conditions such as diabetes, obesity, and hypertension, that are estimated to form the bulk of healthcare load in the next few years, will be given special emphasis. Aetiological and mechanistic basis of these conditions will be discussed in detail.

TEXT BOOK

REFERENCE:

18NS621 SCIENCE AND PROPERTIES OF NANOMATERIALS 3-0-0-3

Basic Materials Science:
Materials classification by bonding, amorphous and crystalline materials, crystal lattices, Miller indices, defects in crystal structure, principles of dislocations, theory of diffusion, mechanical properties, phase diagrams, polymeric materials, composite materials, electrical and optical properties

Nanomaterials science:
Types of Nanomaterials, definition of nanoscale, surfaces and particle size, surface energy and surface tension and relation to size, phase transformation in nanomaterials, specific heat and heat capacity of nanomaterials, mechanical properties of nanomaterials, optical properties of nanomaterials, electrical and magnetic properties of nanomaterials.

Inclusion and importance of surface energy, equations of thermodynamics with surface energy
Equilibrium Particle size, internal pressure and stability, nucleation processes

Kinetics of reactions at nanoscale, Diffusion at nanoscale, ripening among nanoprecipitates.

TEXT BOOKS:

18NS622 NANOMATERIALS SYNTHESIS 3-0-0-3

Synthesis Methods of Nanomaterials: Top down : Milling; Bottom up approaches – Synthesis of zero dimensional metal, metal oxides, semiconductor nanoparticles by different routes – Colloidal method, Sol-gel, Electrodeposition; Kinetically Confined Synthesis of Nanoparticles - Aerosol synthesis, Micellar growth, Spray pyrolysis, Template-based synthesis; Synthesis of one dimensional nanosystems by different routes – VLS and SLS methods, Electrospinning; Synthesis of two dimensional nanosystems – Fundamentals of Film Growth; Vapor phase deposition methods -
Physical and chemical methods; Superlattices; Self Assembly; Langmuir-Blodgett Films; Electrochemical Deposition; Special Nanomaterials – Core/shell structures, Carbon-based Nanomaterials, Micro and Mesoporous Materials, Organic-Inorganic Hybrids

TEXT BOOK

REFERENCE

18HU604 AMRITA VALUES PROGRAMME 1-0-0-1
Culture – definition and scope. Values and culture, cultural freedom
Culture and Education
Culture of Research – creativity and responsibility in research
Spirituality and Culture – spirituality as a way of life, spirituality and religion
Culture and women – gender oppression, motherhood
Culture and the Media
Culture and Politics – national values and political harmony
Philosophy and Culture, epistemology

18NS623 CELL CULTURE AND ANIMAL LAB 1-0-1-2
Cell culture module introduces the students to the basics of cell culture. The course provides students with sufficient knowledge and laboratory skills needed in the academia and industry for carrying out basic cell culture techniques properly and safely. On completion of the course, the student should be able to: account at a general level for the function, maintenance and working of Bio-safety Cabinets (BSC) and be able to work in BSCs with a good sterilisation technique, account for different preventive measures to avoid contamination of cell cultures and how a contaminated cell culture may be treated, account in detail for sterilisation equipment and sterilisation techniques, account for different cell-culture media and important components in the media; be able to apply basic cell-culture techniques, such as cell counting using hemocytometer and harvesting of cells. Explain different factors of significance in the cultivation of cells in vitro and be able to maintain cell lines in culture for a longer period of time without contamination.

Contents-The course starts with theory i.e. basic lecture about a general lay out of a cell culture lab, physical environment needed for the cell culture, growth media and its composition, Biosafety cabinets (BSC), its use in cell culture and how to work in a BSC, contamination during cell culture and how to control it, culturing and splitting of cell lines, cryopreservation of cells and cell viability assays. After qualifying the Biosafety examination, students start working in the cell culture lab. The laboratory work starts in small groups. In the practical laboratory work, the students will have hands-on experience in counting, harvesting, culturing and maintaining cell lines.
Animal handling techniques – animal feed, gavage, different routes of injection, ethical treatment of animals and Institutional Animal Ethics Committee policies.

TEXT BOOK:
REFERENCES:

18NS624 LAB: NANOATERIALSLAB-I 1-0-2-3

1. Metal Nanoparticles: Synthesis of plasmonic silver nanoparticles
3. Absorption Spectroscopy of metal oxide (ZnO) nanoparticles and particle size calculation using Brus equation
4. Semiconductor Nanoparticles: Synthesis of doped ZnS nanoparticles through aqueous method; characterize fluorescence property using spectrofluorimeter
5. Silica Nanospheres: Synthesis and characterization by sol-gel chemistry
6. Surface Plasmon Resonance (SPR) analysis of differently shaped and sized gold nanoparticles by absorption spectroscopy
7. Nanoparticle imaging by Atomic Force Microscope for size and shape analysis

SECOND SEMESTER

18NS602 PHARMACOKINETICS AND PHARMACODYNAMICS 2-0-0-2

Nature of drugs, drug-body interactions, permeation of drugs, drug groups, macromolecular nature of drug receptors, drug concentration and response, drug distribution and elimination of single and multiple drugs in single and multi-compartment models, derivation of relationships between various pharmacokinetic parameters like clearance, volume of distribution, elimination rate constant, half-life etc. Fundamental principles guiding absorption, distribution, metabolism and elimination of drug molecules, basics of population pharmacokinetics, pharmacogenomics, and single-gene pharmacokinetic disorder. Pharmacodynamic concepts related to affinity and efficacy of drug molecules, drug binding, receptor actions, transport proteins, enzyme action, ion channel function and extrusion mechanisms using specific drugs – acetaminophen, warfarin, certain antibiotics, and anti-malignant drugs. Mechanism of action of selected drugs will be discussed.

TEXT BOOK

REFERENCE:

18NS606 BIOINFORMATICS AND STRUCTURE BASED DRUG DESIGN 2-0-2-4

Introduction to Concept of Genomics, Proteomics and Bioinformatics; Databases on web: Genome, Proteome and Molecular biology; Sequence alignment: Near-optimal sequence alignment; Global pairwise sequence alignment; Multiple sequence alignment; Genome rearrangement; Evolutionary Bioinformatics: Phylogenetic tree construction and analysis. Different methods used for protein evolution; Protein Modeling: Protein structure prediction and analysis, Protein visualization software, Protein dynamics and Protein structure validation tools.
Chemoinformatics: Basic idea of molecule design, Visualization and generation of 2D and 3D molecular structures, Chemical databases and its implications, Pharmacophore model, Virtual screening, Ligand based and structure-based molecular design; Commands and Languages: Basic Unix and Linux commands, Extensible markup language and its use in Bioinformatics; Sequence similarity and database search: Pattern recognition and matching; Quantitative and probabilistic pattern matching; Sequence pattern databases, Spectral pattern matching, String matching algorithm.
Pharmacy Informatics: Medical databases and clinically relevant drug-drug interactions, Pharmacy information system, Telemedicine and Telehealth.

Lab course work:
Basic linux commands and linux editors, X-windows and linux environment used for learning different linux commands and text editors like vi, xedit etc. Pairwise and multiple sequence analysis techniques, Sequence alignment studies of protein family to understand its conserved residues including the percentage similarity/identity and its function relationship using BLAST/Fasta and ClustalW software. Exposure to different useful databases, virtual screening and Data mining, Different biologically important databases were explored. Structural similarity search of drug like molecules were mined from different small molecular databases. Basic molecular modeling and optimization techniques, Molecule drawing in ChemDraw. Molecular structure optimization to get the least stable form and other physico-chemical property calculations. Molecular visualization and analysis study using PyMOL software.

TEXT BOOK:

REFERENCE:

18NS604 REGENERATIVE MEDICINE 3-0-0-3

Biologic and molecular basis for regenerative medicine: Molecular organisation of cells, Cell-extra-cellular matrix interactions in repair and regeneration, How cells change their phenotype, Somatic cloning and epigenetic reprogramming in mammals.

Cells and tissue development: Embryonic stem cells; derivation and properties, Induced pluripotent stem cells, Mesenchymal stem cells in regenerative medicine, Multipotent adult progenitor cells, Hematopoietic stem cell properties, markers, and therapeutics, Cardiac stem cells: biology and therapeutic applications, Skeletal muscle stem Cells, Stem cells derived from fat, Peripheral blood stem cells, Pancreatic stem cells, Determinants of tissue development, Angiogenesis, Morphogenesis of bone, Physical stress as a factor in tissue growth and remodeling, organoids.

Inherent regenerative mechanisms: Blood regeneration, Wound healing and skin regeneration, Bone regeneration, Liver regeneration, Peripheral nerve regeneration, The multifactorial role of peripheral nervous system in bone growth.

Decellularized scaffolds in tissue regeneration: Decellularization of tissues and organs, Repopulation of decellularized scaffolds using stem cells, Decellularized scaffolds as a platform for regenerating tissues and organs.

Therapeutic applications: Cell therapy for bone repair and regeneration, Cell therapy for articular cartilage regeneration, Cell therapy for heart diseases, Bone marrow transplantation, Myoblast transplantation in skeletal muscles, Islet transplantation, Stem cell derived secretome. Exosomes for regenerative medicine.
18NS605 BIOFACTORS IN TISSUE REGENERATION 3-0-0-3

Relevance of Biofactors in Tissue Regeneration-Types of Biofactors in extracellular matrix, Interaction between biofactors and cells, Factors affecting biofactor interaction with cells

Inflammatory Cues and Regeneration-Inflammatory response in injury, immune cells and its secretory factors; Inflammatory and anti-inflammatory cytokines, Homeostatic chemokines

Platelets and growth factor secretion-Platelet activation cascade, peptidic growth actors present in PRP, PRP preparation and its regeneration potential

Growth factors in tissue regeneration-Cross talk between growth factor and cells, impact of growth factors on cell viability, proliferation, migration and differentiation; Angiogenic cascade, Angiogenic stimulators and inhibitors

Small molecules in Tissue Regeneration-Natural and synthetic phytochemicals, Applications of small molecules in tissue regeneration

Case studies-Transforming Growth factor β signalling, Bone morphogenetic protein signalling; Vascular endothelial growth factor signalling; Nerve Growth factor signalling, Fibroblast growth factor signalling, Platelet derived Growth Factor signalling, Epidermal growth factor, Hepatocyte Growth Factor

TEXT BOOKS

18NS625 CHARACTERIZATION OF NANOMATERIALS 3-0-0-3

X-ray diffraction and Reciprocal lattice, Bragg’s law, Ewald’s sphere construction, XRD of nanolayers, effects of nanosize and shape anisotropy of nanostructures, texture and strain measurements, SEM: scattering of electrons, secondary and backscattered electrons, electron sources, imaging modes in SEM and its use for nanomaterials size and shape analysis, TEM: Interaction of high energy electrons with matter, elastic and inelastic scattering, TEM instrumentation, imaging and diffraction modes of operation, imaging and contrast in TEM, HRTEM, Energy dispersive analysis of x-rays, Nanomaterials size and size distribution analysis, shape and structural analysis, SPM: Principle of operation, contact and non-contact AFM, dynamic force microscopy, and various other modes of SPM including STM. Chemical Characterization – Optical Spectroscopy, IR spectroscopy: vibrational modes, theory of IR spectroscopy, infrared spectrometers, single and group frequencies, advantages of FTIR. Raman spectroscopy, surface enhanced Raman spectroscopy, X-ray photoelectron spectroscopy. Use of these techniques for nanomaterials and biomaterials analysis.

TEXT BOOKS
REFERENCE:

18NS626 POLYMERIC NANOMATERIALS 2-0-0-2

Biopolymers-Natural and Synthetic biopolymers; Biopolymer composites-both degradable and non-degradable; Dendrimers-Structure, Preparation; Types of hydrogels, in situ/injectable hydrogels, thermo-sensitive polymers-LCST properties.
Polymeric Nanomaterials-Polymeric nanoparticles-preparation methods; Nanogels-Preparation methods; Different types Nanofibers and nanocomposite scaffolds preparations. Biomedical applications of nanoparticles, nanogels, nanofibers and nanocomposite scaffolds.

TEXT BOOK

REFERENCES

18NS627 NANOMEDICINE AND NANO TOXICOLOGY 2-0-0-2

Nanotoxicology: basics of cellular and organ level toxicity, effect of nanosize, shape, surface properties and composition on toxicity of nanomedicines, Case studies: Ag, ZnO, TiO2, Quantumdots, carbon-basednanomaterials, polymeric, protein and lipid nanoparticles.

TEXT BOOK

REFERENCE:
1. Nanomedicine for Cancer Therapy: From Chemotherapeutic to Hyperthermia-Based Therapy , Springer, Piyush Kumar, RohitSrivastava, 2017
2. Nanotoxicology, Materials, Methodologies, and Assessments, Editors: Durán, Nelson, Guterres, Silvia S., Alves, OswaldoLuiz (Eds.).
Different types of Drug Delivery Systems based on the Administration Routes: Oral Drug Delivery, Features of Gastrointestinal tract (GI), Targeting of drugs in the GI tract, Design and fabrication of oral systems - Dissolution controlled, diffusion controlled, osmotic controlled, chemically controlled release, Intravenous Drug Delivery - Factors controlling pharmacokinetics of IV formulations, Concept of opsonization, Transdermal Drug Delivery, Structure of human skin and theoretical advantages of the transdermal route, Transdermal penetration of drugs, adhesion, bioactivity, Examples of transdermal drug delivery systems, Intranasal Drug Delivery - Nasal physiology and intranasal Drug Administration, Nasal drug delivery devices, examples, Ocular Drug Delivery: Structure of human eye, Examples of Ocular Drug Delivery devices; Miscellaneous Drug Delivery Strategies for Advanced Drug Delivery: Concept of Drug Targeting; Prodrug and Bioconjugation; Nanoscale Drug Delivery Systems - Advantages of nanodrug delivery – Improvements in pharmacokinetics, bioavailability, biodistribution; Concepts of controlled and sustained drug delivery, How nanoparticles pass barriers; Surface modification of nanoparticulate carriers; Nanocarriers for drug delivery - Lipid based pharmaceutical nanoparticles – Liposomes, Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, Cubosomes and Hexosomes, Polymeric Micelles, DNA- Based Nanomaterials, Dendrimers, Polymeric nanoparticles, Inorganic nanoparticles, Hydrogels for controlled drug delivery; Active and passive nanocarriers – Concept of targeting, Site Specific Drug delivery utilizing Monoclonal Antibodies, Peptides, Other Biomolecules, Stimuli-Responsive Target Strategies; Implants; Protein and Peptide Drug Delivery; Delivery of Nucleic Acids; Delivery of Vaccines; Aptamers in Advanced Drug Delivery; Biomimetic Self-Assembling Nanoparticles Nanotechnology Challenges; Regulatory Considerations and Clinical Issues in Advanced Drug Delivery

TEXTBOOKS:

2. Nanoparticulates as Drug Carriers, Vladimir Torchillin, Imperial College Press, 2006

REFERENCE:

18NS629 LAB: NANOMATERIALS LAB-II 1-0-2-3

1. Polymeric Nanoparticles: Synthesis of alginate nano and micro particles; characterization of particle size by Dynamic Light Scattering (DLS) and Zeta analysis
3. Electrospinning: Fabrication of electrospun PVAnanofibres and microfibres; characterization of fibers morphology and diameter using SEM
4. Thermal characterization of polymers using Thermogravimetric – Differential thermal Analysis (TGA-DTA)
5. X-ray diffraction spectrometer (XRD): Structural characterization of crystalline and amorphous nanomaterials
6. Raman spectroscopy: Characterization of polymeric and inorganic samples using Raman Spectroscopy
THIRD SEMESTER

18RM601 ETHICS IN RESEARCH AND RESEARCH METHODOLOGY 1-0-1-2

Plagiarism, regulatory principles, safety in research, ethics in stem cell research, ethics in clinical research, ethics in nanomaterials based research Principles of data documentation, protocol development, research questions and hypothesis driven research.

TEXTBOOKS:

18NS630 NANOSYSTEMS IN MEDICAL DIAGONOSTICS 2-0-0-2

Module I - Medical Diagnosis- from biomarkers to cells and tissues, Classical clinical diagnostic imaging tools: MRI, PET, CT, Ultrasound, Optical- principles, methods and challenges; Molecular techniques- principles, methods and challenges

Module II - Bringing in nanoscale materials and devices for diagnosis: Application in MRI, CT, NIR, Ultrasound, Nuclear and Optical imaging; Nanobio-sensors in diagnosis- cantilever based sensors, enzymatic and non-enzymatic sensors, electrochemical sensors, piezo electric biosensors, Lab-on-a-chip concept, Bio- microelectromechanical systems (Bio-MEMS), Microfluidics, surface enhanced Raman spectroscopy based diagnostics, surface plasmon based bio sensors; Current nanotechnology based diagnostics in use and under clinical trials.

TEXT BOOK:

REFERENCES:

2. Current Medical Diagnosis and Treatment, Maxine A Papadakis, McGraw Hill Education, 2017

18NS631 SCAFFOLDS IN TISSUE REGENERATION 2-0-0-2

Definition and requirements of a scaffold, functions of a scaffold, structure of a scaffold, materials for scaffolds and their influence on scaffold properties, scaffold structure. Use of nanomaterial in scaffolds, scaffold influence on cellular behavior- role of scaffold porosity, mechanical strength, surface chemistry, scaffold rigidity; surface topography, hydrophobicity/hydrophilicity, degradation behavior.

Fundamental aspects of tissue response to nanomaterials-Protein adsorption on nanomaterials, Cellular response to nanomaterials; Blood-material interactions, Inflammatory and immune response to nanomaterials, Angiogenic response to nanomaterials.

Biocompatibility of nanomaterials, In vitro and in vivo biocompatibility tests as per ISO

Case Studies-Applications of nanomaterials in Skin regeneration, Bone regeneration, Liver regeneration, Vascular tissue regeneration, Cartilage regeneration
TEXT BOOK:
Ying Deng and Jordan Kuiper, Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications (Woodhead Publishing Series in Biomaterials), 2017

REFERENCE: