The AAA Humanitarian Operations: Learnings from MA Math’s Experience

Santosh Mahapatra
Clarkson University (USA)

Bhavani Rao
Amrita University (India)

Maneesha Sudheer
Amrita University (India)

Sarala
Amrita University (India)

POMS Annual Meeting (2015), Washington D.C.
Motivation

- Natural disasters are rampant
- Humanitarian operations are incredibly challenging
- It is important to understand how to manage these operations effectively
- Organizational approaches to Humanitarian operations have not been adequately studied
Agenda

- Why ‘Humanitarian Operations’ an important problem
- The AAA framework
- Case studies based on M.A. Math’s experience
- Evaluation of humanitarian operations
- Conclusion
Why Humanitarian Operations is important to study?

- Uncertainty regarding the occurrence and severity of the consequences
 - Examples: Nepal earthquake, Asian Tsunami, Uttarkhand landslides
- 9/10 disasters occur in highly populous developing countries
- Each disaster presents unique challenges
- Disasters might be natural but consequences are man-made
- Disaster management is dynamic: preparedness, response, recovery, rebuild
- Multiple organizations serving the same people
 - Coordination challenges
Disaster Management Activities

Most of the post-disaster humanitarian work focus here!

Very few firms focus here!

Preparedness (Cushion) Relief/Response (Survival) Recovery (Get back) Rebuild (Grow/transform)

© 2015 S. Mahapatra, B. Rao and M. Sudheer
The AAA (Lee, 2004) Supply Chain

- **Agility**
 - Ability to address the short-term demand-supply mismatch without time and cost penalty
 - Trust and technology based sense making and quick response
 - Centralized command with decentralized control/implementation

- **Adaptability**
 - Ability to adjust to contextual dynamics
 - Timely integration and de-integration in the (flexible) network

- **Alignment**
 - Ability to cater to the varied needs of different stakeholders
 - Engage, encourage, empower (trust based sharing of reward, risk, and responsibility)
A Brief Review of MA Math’s Activities and Organization Structure

- Led by world renowned humanitarian and spiritual leader, Mata Amritananadamayi Devi (Amma)
- Humanitarian activities are conducted by the NGO ‘Embracing the World®’: has a global network of local and regional centers across 40 countries
- The Amrita University has engineering medicine programs with 18,000 students across 5 campuses

© 2015 S. Mahapatra, B. Rao and M. Sudheer
Humanitarian Initiatives and Recognitions

- Example initiatives are:
 - Disaster relief
 - Fighting hunger
 - Care homes for children
 - Research for better world
 - Empowering women
 - **Many more…**

- http://amma.org/global-charities
- UN has conferred the ‘Special Consultative Status’ on MA Math
- Pope Francis invited Her (Amma) to join in the joint declaration to fight human trafficking by World Religious and Spiritual leaders

© 2015 S. Mahapatra, B. Rao and M. Sudheer
MA Math’s Humanitarian Activities in India

- There are 27 centers (ashrams or spiritual growth centers) in India which also serve as local centers for relief and humanitarian aids.
- Schools, medical centers, housing projects are now widely distributed in India.

© 2015 S. Mahapatra, B. Rao and M. Sudheer
Methodology

- Exploratory case study research (Eisenhardt 1989)
 - 5 different types natural disasters in India were studied
 - Why India?
 - Significant geographical, social, and political diversity; occurrence of all types of disasters; populous country with highly vulnerable groups of people
 - Why MA Math?
 - Has been involved at all stages of disaster management cycle; people from all over the world participate

- Data collection
 - Several rounds of interviews with multiple personnel who were involved in managing and conducting humanitarian operations: coordinator, doctor and relief/construction worker
 - Information on response, recovery and rebuilding activities were collected

© 2015 S. Mahapatra, B. Rao and M. Sudheer
Research Design Framework

Severity of the event

Uncertainty/speed of onset

Low

High

 - 7.7 magnitude (43 secs)
 - 20,000 deaths; 166,800 injured
 - $ 5.5 billion property damaged

2. Indian Asian Tsunami (2004)
 - 9.3 magnitude (9 mins)
 - 18,000 deaths; 647,599 displaced

 - Thatched roof
 - 94 deaths

 - Breach in Kosi embankment
 - 434 deaths; 2.3 million people were affected

5. Uttarkhand landslide (2013)
 - 375% of usual rain (3 days)
 - 5,800 deaths in 4,200 villages
Research Design Framework

- Uttarkhand (landslide)
- Bihar (flood)
- Gujarat (earthquake)
- Asian (tsunami)

© 2015 S. Mahapatra, B. Rao and M. Sudheer
Case Analysis (Gujarat Earthquake)

- One of the most socially and economically advanced states
- Progressive political climate
- Yet, high economic and infrastructural disparity
- Many international and national agencies were active (e.g., IFRC, WHO, UN volunteers, SEWA etc.)
- First disaster management experience for MA Math

 - 7.7 magnitude (43 secs)
 - 20,000 deaths
 - 166,800 injured
 (First major experience for MA Math)
Case Analysis (Gujarat Earthquake)

Immediate (Relief, first few weeks)
- Reached within 72 hours (joined others)
- Started from scratch with < 20 people
- First hand assessment; reliance on govt. info to act
- In small scale by own supplies/donations

Intermediate (Recovery, 1-6 months)
- Create shelters, clean-up, medical help/surgery
- Many humanitarian agencies left after about a month or two
- Use of local human resources (admirers)
- Goodwill: access to info, funds and freedom to act
- Inter-NGO reciprocation and collaboration
- HR process: volunteers with humanitarian attitude, at work training, job rotation

Long-term (Rebuild)
- Construction of medical centers, schools, adoption of village
- Earthquake resistant design (1200 houses, school, roads, community hall, medical centers)
- Capitalized on the strong well-knit, social infrastructure and political support

 - 7.7 magnitude (43 secs)
 - 20,000 deaths
 - 166,800 injured
 (First major experience)
Case Analysis (Indian Tsunami)

- Two very populous states were affected
- Socially and culturally advanced regions
- Politically less progressive
- Many international and national agencies (i.e., Indian Army, ADB, UNDP, USAID etc.) were active at different stages
- MA Math was involved at all stages of disaster management

 - 9.3 magnitude (9 mins)
 - 18,000 deaths; 647,599 displaced
Case Analysis (Indian Tusnami)

- 6200 houses were built
- Provided financial/medical aid
- Delivered vocational training to 2500
- Fed 15000 people for months
- Sterilized mothers gave birth after undergoing fallopian tube recanalization and in-vitro fertilization at the M A Math hospital
Case Analysis (Indian Tsunami)

Immediate (Relief, first few weeks)
- Responded immediately (0 - 72 hours) with <50 people
- Direct material/emotional support
- Massive operations using own/donated supplies
- Food, shelter, cremation – govt. failed
- Coordinated with other agencies including Govt.

Intermediate (Recovery, 1-6 months)
- Construction, health care was emphasized
- Use of local human resources (>1600); people across political affiliations joined
- Telemedicine, super specialty hospital access
- Worked in coordination with govt. admin and other associations
- Focused on recreational/vocational activities

Long-term (Rebuild)
- Tsunami resistant house and school construction (house construction is ‘culturally sensitive’)
- Diverse needs – customized solutions
- Capitalized on the strong social infrastructure

2. Indian Tsunami (2004)
- 9.3 magnitude (9 mins)
- 18,000 deaths; 647,599 displaced
- The NGO’s HQ was hit
Case Analysis (Bihar Flood)

- Very populous districts with highly vulnerable people
- Social and economically backward
- Politically one of the least progressive
- Very few international and national agencies were involved (?)
- Very inaccessible; workers could reach after 5-7 days
- Built 17 temporary shelters for 1500 victims
- A team of 30 doctors and nurses from M A Math provided health care (i.e., 100 medical camps treated 50,000 people)
- Govt. wanted to take the responsibility of rebuilding activities

- Breach in Kosi embankment
- 434 deaths; 2.3 million people were affected
MA Math was involved for three months in the ‘recovery stage’ in terms of building shelters, providing education and delivering expert medical care utilizing its advanced tele-medicine and super-specialty ambulances.
Case Analysis (Uttarkhand)

- Thinly populated state
- Socially and culturally advanced regions
- Political/admin system is slow
- Relatively few international and national agencies were/are active
- Inaccessible, took 7-15 days to reach
- Government policy regarding disaster management was unclear
- Conducted medical camps at the early stage
- M A Math is mainly involved in rebuilding activities
- Transportation is a challenge – each house requires 1500 man load materials

5. Uttarkhand landslide (2013)
- 375% more rain (3 days)
- 5,800 deaths in 4,200 villages
After the initial relief work, M A Math is involved in building earthquake resistant houses, schools and women development activities in 42 villages that have been assigned by the government.
Evaluation and Assessment

<table>
<thead>
<tr>
<th>Contributing Factors</th>
<th>Hi Severity - Hi Uncertainty (Earthquake)</th>
<th>Hi Severity - Low Uncertainty (Tsunami)</th>
<th>Hi Severity - Low Uncertainty (Landslide)</th>
<th>Hi Severity - Low Uncertainty (Floods)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agility</td>
<td>Decentralized reserve of manpower, financial and material resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptability</td>
<td>Absence of internal bureaucracy; highly motivated volunteer workers, job rotation, deep commitment to humanitarian/organizational values and not to specific functions/roles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alignment</td>
<td>Inter-organizational trust and respect</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transformational Leadership of ‘Amma’

“If we want to eliminate the enemies that lurk in the innermost depths of the heart, we have to serve the world.”

- Amma
Main Findings: Key Capabilities

- The university with strong engineering and medicine programs provides quick access to crucial resources.
- Operations put victims first and process/structure next.
- Local involvement and access to resources from the local network provides the benefit of last mile supply chain.
- Government’s support and confidence is maintained/developed.
- Charismatic leadership, highly motivated network of volunteers help develop agility and adaptability.
- Accounts for different social and political contingencies.

© 2015 S. Mahapatra, B. Rao and M. Sudheer
The Same Model: Nepal Earthquake April 25th, 2015

M A Math has begun response activities in Nepal on April 27th.
Future Research

- Develop some specific research questions, deriving from the present findings
 - What is the right humanitarian supply chain structure?
 - integration and/or deintegration – how much?
 - chain, network or cluster?
 - How to manage information and financial flows?
 - What are the right control and coordination principles?
 - cooperative, relational, hierarchical or network?
- Develop an organization theoretic understanding of effective humanitarian operations
 - Chaos theory (Lorenz 1963), Network theory (Burt 1997), Complexity theory (Butler 1990)
References

Thank You!

Questions or Comments?