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Soli tons and their resonances on two-dimensional· superfloid films 
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Abstract. The dynamics of sa'turated two-dimensional superfluid 4He films is shown to be 
gO,verned by the Kadomtsev-Petviashvili equation with negative dispersion. It is established 
that the phenomena of soliton resonance could be observed in such films. Under the .lowest 
order nonjinearity, such resonance would happen only if two dimensional effects arc taken 
into ,account. The amplitude and velocity of the resonant soliton are obtained. 
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1. Introduction 

The concept of soli tons, their propagation and interaction have been playing 
increasingly important roles in different branches of physics. In superfluid 4He films, 
small finite amplitude localised density fluctuations can lead to the existence of solitons 
made up of superfluid condensate. This arises essentially due to the balance between 
dispersion and the nonlinearity arising from the Van der Waals potential of the 
substrate. Huberman (1978), showed that the nonlinear local density fluctuations in 
very thin 4He films ("" 10- 7 cm) may travel u.nattenuated for larg~ times. These 
superfluid density fluctuations were shown to be governed by the Korteweg-de Vries 
(KdV) equation (Korteweg and de Vries 1895). Nakajima et al (1980a) examined the 
problem from a hydrodynamical point of view and applied the reductive perturbation 
scheme to obtain the KdV equation. 

Biswas and Warke (1980) confirmed theoretically the predictions about the existence 
of superfluid soli tons by deriving a KdV equation from the phenomenological 
Hamiltonian suggested by Rutledge et al (1978). This KdV equation had a nonlinearity 
different from that proposed by Huberman. Recently it has been shown by Radha 
Balakrishnan et al (1989) that the equation of motion of the superfluid condensate 
could be obtained by starting from a microscopic theory of nonlinear dynamics in 
superfluid 4He, formulated, using a model in which a system of bosons 'with hard' 
cores plus nearest neighbour interaction is described by a pseudospin Hamiltonian 
on a lattice. 

These results were later generalized to quasi-two-dimensional wave propagation 
(where essentially the direction of propagation was chosen to be along the x-axis and 
the y-dependence was assumed to be weak) by Biswas and Warke (1983) who obtained 
the Kadomtsev-Petviashvili{K-P) equation (Kadomtsev and Petviashvili 1970). Based 
on these results, we have (Sreekumar and Nandakumaran 1985) studied the 
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phenomenon of two soliton resonances of the K-P equation for the superfluid surface 
density fluctuations and obtained the amplitude and velocity of the resonant solitons. 
The existence of large amplitude solitons in the very thin two dimensional superfluids 
has also been established recently by us (Sreekumar and Nandakumaran 1989), by 
numerically integrating the fully nonlinear Schrodinger equation representing the 
superfluid surface density fluctuation. 

All these have been studied on very thin 4He films. Nakajima et al (1980b) extended 
this analysis to the so-called saturated film of superfluid 4He, whose thickness is of 
the order of 10- 6 cm. In such films, the surface tension plays a decisive role in the 
dynamics of the system, which was totally ignored for very thin films. The effect of 
surface tension (Nakajima et al 1980b) is to increase the characteristic length of the 
soliton, and to reduce the soliton velocity. This makes the detection and generation 
of solitons using conventional third sound apparatus easier. The a~alysis done by 
Nakajima et al was restricted to one dimension. It seems natural, therefore, to search 
for quasi two dimensional solitons in such systems. 

In this paper we investigate the non linear waves propagating on a two-dimensional 
saturateo film of superfluid 4He. Here we are concerned· with the temporal evolution 
of the fluctuations in thickness of the superfluid. This is in contrast to the earlier 
investigations by Huberman (1978), Biswas and Warke (1980, 1983), Nakajima etal 
(1980a) and Sreekumar and Nandakumaran (1985), where the surface deformation 
was negligible ·and only density fluctuations were present, due to the very small 
thickness of the superfluid film. In the small amplitude regime our system reduces to 
the K-P equation. It is shown that resonance of soli tons can be observed in such 

. films as against the one-dimensional case studied by Nakajima et at (1980b). 

In the next section we derive the governing equations for the surface displacement. 
In §3, we consider the small amplitude regime, and obtain the K-P equation. It is 
shown in §4 that in the lowest order nonlinearity, soliton resonance could be obtained 
only if two dimensional effects are taken into account. 

2. Finite amplitUde surface waves 

When saturated films of superfluids are considered one has to include the effects of 
surface tension, which is generally ignored for very thin films. The Van der Waals 
force is the non linear force acting on the superfluid film. The acceleration of the 
superfluid due to a temperature gradient, which acts as a very small correction factor 
(Rutledge et a11978) in our low temperature fIlm is neglected in this paper. We consider 
the x and y axis to be lying on the substrate on which the superfluid of eqUilibrium 
depth d exists. Geometrical configuration of the system is shown in figure 1. 

Since the superflow is irrotational we can describe it by the velocity potential 
<J)lx.} •. :.,), If we treat the system to be incvmpressible we can write the equation of 
continuity in bulk as 

(1) 

• 
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Fipre 1. Geometrical configuration of the system. The.x and y axes lie on the plane surface 
of the substrate. 

There is the additional condition that the superfluid would not flow into the substrate. 

- =0 c»1 OZ %=0 • 
(2) 

The continuity e~uation at the film-vapour intedace takes the form 

0:t1 
+ (:} ~; + (:) 1 ~yl - (: ) 1 = O. (3) 

The index t refers to the film-vapour interface %1 ~d+a(x,y,t), wherea(x,y,t) is the 
departure of the film surface from its equilibrium position. The equation of motion 
at the surface is (Nakajima eta11980b) 

(4) 

The last two terms appearing in (4) represent the leading terms in the expansion of 
the Van der Waals force term. 01 = 3a/d4 and Ol = 12a./d4

. a. is the Van der Waals 
constant, p is the density of the superfluid and (J its sudace tension. Equations (3) 
and (4) represent finite amplitude sudace waves propagating on the superfluid film. 
We expand ct>(x,y,z,t) as (Lamb 1980) 

00 

~x, y, Z, t) = L z"q, .. (x, y, t). (5) 
"'"0 
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Now by using (1) and (2), we get comparing like powers of z, 

<Il(x, y, z, t) = cos (zv)4>o(x, y, t), (6) 

where V is the two dimensional gradient having components a/ax and a/ay along x 
and y axes respectively. Equation (4) can be rewritten after operating once with V as 

av (J gz 2 
-+tvv~--=VVza+glVa-2dVa =0, at p 

(7) 

where V is the velocity in two dimensions. 

3. Solitary waves 

Using (3) and (7) we have studied the dynamics of localised disturbances, of long 
wavelength and small amplitude. in the superfluid fi1m thickness. We orient the 
horizontal coordinate system such that the principal direction of propagation is chosen 
as the x-axis. We make the following coordinate transformation. 

(8) 

where C3 is velocity of the moving frame. 
To transform the equations (3) and (7) into a wave equation with respect to the 

superfluid surface displacement, the reductive perturbation method by Tanuiti and 
Wei (1968) can be applied using the scaling transformation 

(9) 

We regard e as an infmitesimal, however it disappears in the final equation. We are 
essentially looking for fluctuations in the thickness of the fi1m which travel with long 
wavelength along the x-direction and we assume that the y-coordinate dependence 

, of the wave is weak. We expand a and V in powers of t. 

a = ao + sa 1 (x, y. t) + t1a1(x, y, t), 

u = ~l + eZ
U2 + ... , 

v = 81/2(SV1 + S2V1 + ... ), 

(lOa) 

(lOb) 

(lOc) 

where the expansions of the x and y components of the velocity, Cl and v, are made 
consistent with <1>xy = <1>,%. Using equations (3) and (6)-(10) and comparing coefficients· 
of e3/2 and 85/ 2 we get . 

(11 ) 

(12) 

• 
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Using the boundary conditions that at and Ul goes to zero as x~ ro, (11) and (12) 
can be solved to get 

(15) 

Now eliminating u2 between (13) and (14), 

Equation (16}.is the K-P equation, which can be expressed in the more familiar fonn 
by the following transformations. 

1 ( 3C~) 1 _ al=-&/p -= g2-- - ~=-kox , y d 2C
3

' 

_~ __ (C1d _ C~d2)_1_ f2kI k -
k~ P 3 2C

3
' 1'/ = ,re; Y. ° l' = ot. (17) 

So (16) would become 

G [GP Gp 03p] <Pp 
o~ Ch + 6p ae + 0~3 + 01'/2 = O. (18) 

The K-P equation represented by (18) is the one withonegative dispersion and it 
is known to possess N-soliton solutions (Satsuma 1976). This has been discussed in 
great detail by Ohkuma and Wadati (1983). The one soliton can be written as (Satsuma ~ 

and Ablowitz 1979) 

(19) 
where 

and k and kp are the components of the linear momentum along the ~ and '1 
directions respectively. Equation (19) describes a soli ton propagating with velocity 

(k2 + p2)/JI+? in the direction making an angle tan _°1 (P) with the x-axis. This 
angle should be small because the K-P equation holds under the assumption that 
the two-dimensional effect" is small. 

4. Soliton resonance 

The two soliton solution for equation (18) is obtained from 

(20) 
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where 

and 

12 = 1 + e2~1 + e2C1 + All exp 2({1 + (2) 

{I = tkl[~ + PI'1- (kf + pf)t"J + C(O) 

3(k1 - k2}1 - (PI - p02 

All = 3(k1 + k2)2 - (P1 - p02 ' 
(20a) 

Soliton resonance occurs (Hirota and Ito 1983) when A 12 = 0 or CX), i.e. for 
3(k I ± k2)2 - (Pl - Pl)2 = O. The plus sign refers to the case Al2 = 00 and is called 
plus resonance and the other case (A 12 = 0) is called minus resonance. 

The resonant soliton in general can be written (Sreekumar and Nandakumaran 
1985) in the form 

(21) 

The amplitude and velocity of the resonant soliton, in the original coordinate 
system, can be written as 

Y, { [6.d + Cld'Pl~' [k,(kl + Pl)± k,(kj + pm r" -(g, d)"'. (22b) 

12C~p(kl ±kz)2 +"2(k1P1 ±k2P2)2(6ad+ C~d2p) 

If the resonance is to be observed in actual experimental set up, the resonance 
condition~ given by (20a) should be consistent with the conservation laws. Tajiri and 
Nishitani (1982a) showed that this condition is, satisfied for the K-P equation (18) in 
the following way. First a similarity transformation is applied to the K-P equation. 
Then the resonance conditions of the resulting equation are shown to satisfy the 

,. corresponding conservation laws. The similarity transformation has the form (Tajiri 
and Nishitani 1982b) 

(23a) 

(23b) 

(23c) 

where P, Q and R are function of t, p' = dp/dt, p" = d 2p/dt2 and Q' ~ dQ/dr. Using 
(23) in (12) we get the Boussinesq type equation 

(24) 
• 
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Tajiri and Nishitani (1982a) showed that this equation exhibits soliton resonance 
and the resonance conditions do satisfy its conservation laws. This suggests that 
soliton resonance may be observed in two-dimensional saturated films of super­
fluid 4He. 

Now we turn our attention to one dimensional wave propagation in saturated 
superfluid films. The governing equations (Nakajima et al 1980b) in this case, under . 
weak nonlinearity, is the KdV equation. 

Ut + 6uu.x + ".xX% = O. (25) 

The one soliton solution for KdV equation is 

and its resonance conditions are given by 

(26) 

The first two conserved quantities of the KdV equation are f u dx and J ul dx. For 
two soli ton resonant interaction, these conservation laws give 

k1 ±kz =K 

k3 +P=K3 
1- 2 , 

(27a) 

(27b) 

where kl and kl corresponds to the initial solitons and K to the final resonant soli ton. 
The plus and minus signs corresponds to the two different types of resonance. 
Equations (27a & b) are not satisfied for any k1 and kz except for the trivial cases 
kl = 0, kl = 0 or kl = - kz. Hence we can say that it is not possible to have soliton 
resonance in one-dimensional saturated superfluid films, under weak 
nonlinearity. 

5. Discussion 

We have reduced the hydrodynamics equations for saturated superfluid films to the 
K-P equation with negative dispersion in the small amplitUde regime. This is to be 
compa,red with the result of Biswas and Warke, who obtained K-P equation with a 
positivb dispersion. The two problems are, however entirely different. They consider 
superfluid density fluctuations in thin fIlms whereas in the present paper we are 
discussing the fluctuations in thickness of the superfiuid films. 

In the saturated films one is able to observe the phenomenon of soliton resonances 
when two-dimensional wave propagation is considered. The amplitude and velocity 
of-the resonant soliton are given by (22). We have shown explicitly that under lowest 
order of nonlinearity soJiton resonance is observable only when two-dimensional 
wave propagation is taken into consideration. In the actual experimental 
situatioIlt this would mean that, resonance can be observed only when the initial 
profile has a small decay along the direction perpendicular 'to its direction of 
motion. 
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