Back close

Screening for Compounds with Lifespan Altering Effect on Caenorhabditis Elegans and Gene Expression Microarray Data Based Computational Drug Repurposing

Start Date: Friday, Jan 01,2016

End Date: Tuesday, May 31,2016

School: School of Biotechnology

Project Incharge:Dr. Sanjay Pal, Dr. Geetha Kumar
Co-Project Incharge:Nivedita Kamath, Harikrishnan Thoppil
Screening for Compounds with Lifespan Altering Effect on Caenorhabditis Elegans and Gene Expression Microarray Data Based Computational Drug Repurposing

Lifespan is a biological process regulated by several genetic pathways. One strategy to investigate the regulation of lifespan is to use small molecules to perturb age-regulatory pathways. Here we plan to screen compounds in a biphasic approach. To find compounds that extend and decrease lifespan of C. elegans. To date, a number of molecules are known to extend or decrease lifespan in various model organisms and are used as tools to study the biology of aging and anthelminthic. The number of molecules identified thus far is small compared to the genetic “toolset” that is available to study the biology of lifespan. Caenorhabditis elegans is one of the principle models used to study aging and anthelminthic discovery because of its excellent genetics and short lifespan of three weeks. 

Here, we are choosing 50 compounds and administering them to the synchronous population of worms at three different concentrations. We, then obtain the lifespan score by counting the worms that are alive or dead over the weeks after the drug administration. The drugs that extend and decrease average lifespan with respect to the control worm culture are determined. 

Related Projects

Development and Fabrication of non-enzymatic Electrochemical Glucose Biosensor and Fabrication of Glucometer
Development and Fabrication of non-enzymatic Electrochemical Glucose Biosensor and Fabrication of Glucometer
Furfuryl Derivatives of Meldrum’s Acid: Synthesis, Characterisation and Biological Studies
Furfuryl Derivatives of Meldrum’s Acid: Synthesis, Characterisation and Biological Studies
Natural Dyes as Efficient Candidate for Enhancing the Photovoltaic Properties of Dye Sensitized Solar Cells
Natural Dyes as Efficient Candidate for Enhancing the Photovoltaic Properties of Dye Sensitized Solar Cells
Production, Purification and Application of Naringinase from soil isolates of Aspergillus spp
Production, Purification and Application of Naringinase from soil isolates of Aspergillus spp
Development of chromatographic separation and detection techniques for natural products, as plant extracts, peptides, proteins and carbohydrates
Development of chromatographic separation and detection techniques for natural products, as plant extracts, peptides, proteins and carbohydrates
Admissions Apply Now