Course Syllabus
Introduction to Simulation: System and system environment, Component System, Type of systems, Types of models, Steps in simulation study, Advantages and disadvantages of Simulation. Types of Simulation: Discrete Event Simulation, Simulation of a single server queuing system, Simulation of an Inventory system, Continuous Simulation, Predator-prey system, Combined Discrete-Continuous Simulation, Monte Carlo Simulation. Statistical Models in Simulation: Useful statistical model, Discrete and Continuous Probability distributions, Poisson process and Empirical distribution. Random Numbers Generation: Properties of random numbers, Generation of pseudo random numbers, Techniques for generating random numbers, Tests for random numbers. Random Variate Generation: Inverse Transform technique, Convolution method, Acceptance Rejection Techniques. Input Modeling: Data Collection, Identifying the distribution of data, Parameter Estimation, Goodness of fit tests, Selection input model without data, Multivariate and Time series input models. Verification and Validation of Simulation Model: Model Building, Verification and Validation, Verification of Simulation models, Calibration and Validation of models. Output Analysis: Stochastic nature of output data, Measure of performance and their estimation, Output analysis of terminating simulators, Output Analysis of steady state simulation. Comparison and Evaluation of Alternate System Design: Comparison of two system design, Comparison of several system design, Confidence interval for the difference between expected responses of two systems.