Back close

Autonomous Mobile Robots Based on Bioinspired Artificial Control, Indo – Italian Initiative

Start Date: Monday, Mar 29,2004

School: School of Engineering, Coimbatore

Funded by:DST and Ministry of Science, Italy
Autonomous Mobile Robots Based on Bioinspired Artificial Control, Indo – Italian Initiative

This work aims in developing and investigating the dynamics of the brain models capable of predicting cerebellar input-output transformations; analyzing the mathematical and computational properties of the network. Interfaces and mobile robot exploiting the neuronal network to the problem of navigation in mobile robots equipped with proprioceptive sensory system will be developed to apply the neuronal model and achieve,

  1. Intelligent Mobility: Primarily concerned with the development of sensors and control for mobile robots.
  2. Terrain Modeling and Characterization: Investigate their abilities to model terrain and characterize for predicting the mobility.
  3. Behavioral & Evolutionary Robotics: modeling, analyzing and designing advanced behavioral control schemes for single or multiple mobile robotic systems.

All Terrain Intelligent Robot System
This robot was developed to test to bio-inspired algorithms. It has two sections. The main section moves using a slider-crank walking mechanism docking with it the wheeled section. The wheeled section can move at 30kmph and be controlled remotely by the walking section. The main section has a serial robot arm for pick and place purpose, an arm to cut/clear any vegetation obstructing its path. It can house a CCD camera and a laptop to process the scene ahead for navigation. The camera can swivel up to 180o. It has obstacle sensing devices and a metal detector too.

Related Projects

Smart EV Sharing infrastructure with Solar Powered EV Battery Swapping/Charging Stations
Smart EV Sharing infrastructure with Solar Powered EV Battery Swapping/Charging Stations
Design and Development of Low Profile Substrate Integrated Dielectric Resonator Antenna for Space Applications
Design and Development of Low Profile Substrate Integrated Dielectric Resonator Antenna for Space Applications
Particulate Polymer Composites for Space Applications: Modeling and Simulation of Physical, Mechanical and Rheological Properties
Particulate Polymer Composites for Space Applications: Modeling and Simulation of Physical, Mechanical and Rheological Properties
Machine Fault Identification : A Unified Approach
Machine Fault Identification : A Unified Approach
Feature based Transfer Function Design for Volume Rendering
Feature based Transfer Function Design for Volume Rendering
Admissions Apply Now