Back close

Design and development of a negative stiffness mechanism based low-frequency passive vibration isolation platform

Project Incharge: Dr. B. Santhosh

Co-Project Incharge: Dr. K. I. Ramachandran

School: School of Engineering, Coimbatore

Agency & Scheme: ISRO/ RESPOND

Duration: 24 Months

Total Cost: Rs. 18,27,920/-

Design and development of a negative stiffness mechanism based low-frequency passive vibration isolation platform

Indian Space Research Organization (ISTO) awarded a research project titled “Design and development of a negative stiffness mechanism based low-frequency passive vibration isolation platform” under SERB SURE scheme. The Principal Investigator (PI) for the project is Dr. B. Santhosh, Associate Professor , Department of Mechanical Engineering, Amrita School Engineering, Coimbatore and Co-Investigator for the Project is Dr. K. I. Ramachandran, Professor, Department of Mechanical Engineering, Amrita School Engineering, Coimbatore.

Project Summary

This project involves the development of a mathematical model for the six degrees of freedom vibration isolator based on QZS mechanism.  A computational framework based on harmonic balance method (HBM) will be developed to obtain the transmissibility of the isolator.  A prototype of the six degrees of freedom isolator based on negative stiffness will be developed and tested for low frequency isolation capability.

Related Projects

Innovation Management in the Indian IT Industry and to Develop Strategies for Commercializing Innovative IT Products and Services
Innovation Management in the Indian IT Industry and to Develop Strategies for Commercializing Innovative IT Products and Services
Targeting Antimicrobial Resistance (AMR) in Multidrug Resistant (MDR) ESKAPE Pathogens 
Targeting Antimicrobial Resistance (AMR) in Multidrug Resistant (MDR) ESKAPE Pathogens 
Drug Discovery from Medicinal Plants using Machine Learning Approaches
Drug Discovery from Medicinal Plants using Machine Learning Approaches
Assessment of Waste Management Practices – Co-Design Phase
Assessment of Waste Management Practices – Co-Design Phase
Wireless Soil Sensor Network for Automated Irrigation and Fertilization
Wireless Soil Sensor Network for Automated Irrigation and Fertilization
Admissions Apply Now