Back close

Molecular Mechanisms in Impaired Wound-Healing

Start Date: Friday, Aug 01,2008

School: School of Biotechnology

Project Incharge:Dr. Bipin Kumar G. Nair
Funded by:Bristol Myers Squibb (BMS) Amrita Vishwa Vidyapeetham
Molecular Mechanisms in Impaired Wound-Healing

Diabetic wound healing is a challenging problem to solve as it requires the integration of interdependent processes that involve signal transduction input from inflammation, cell migration, cell proliferation, cell differentiation and production of extracellular protein components. A number of factors including Epidermal Growth Factor (EGF), Matrix Metalloproteinases, as well as Nitric Oxide (NO) play unique roles independently, or through cross talk between these factors and thereby have a profound impact on the wound healing process.

The potential for utilizing natural products (e.g. Anacardic Acid from Cashew nut Shell Liquid) as an invaluable repository for the discovery of novel drug candidates and developing these leads as ideal templates to design effective drugs are important milestones being pursued by the laboratory.

Another approach also involves study of in-silico methods of pathway modeling to understand mechanisms involved in Wound Healing. This approach will help in unraveling the molecular effects resulting from the concerted actions of many modulators by taking into account a detailed dynamic representation of the same.

Publications

Athira Omanakuttan, Jyotsna Nambiar, Rodney M. Harris, Chinchu Bose, Nanjan Pandurangan, Rebu K. Varghese, Geetha B. Kumar, John A. Tainer, Asoke Banerji, J. Jefferson P. Perry and Bipin G. Nair. “Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9.” Mol Pharmacol 82:614–622, 2012.

Related Projects

Label – Free Quantitative Proteomics Analysis to Study the Effect of Triclosan on Delta-Haemolysin: A Haemolytic Factor of Methicillin – Resistant Staphylococcus Aureus
Label – Free Quantitative Proteomics Analysis to Study the Effect of Triclosan on Delta-Haemolysin: A Haemolytic Factor of Methicillin – Resistant Staphylococcus Aureus
A study of Biological Activity of Extracted Microbial Biosurfactant
A study of Biological Activity of Extracted Microbial Biosurfactant
Tetracycline Augments the Anti-biofilm Potential of Essential Oils and D-Amino Acids Against Pseudomonas Aeruginosa
Tetracycline Augments the Anti-biofilm Potential of Essential Oils and D-Amino Acids Against Pseudomonas Aeruginosa
Expression, Purification And Refolding Of Recombinant Amidase In Escherichia Coli
Expression, Purification And Refolding Of Recombinant Amidase In Escherichia Coli
Determination of Antibacterial Activity of Different Spices Against E.coli
Determination of Antibacterial Activity of Different Spices Against E.coli
Admissions Apply Now