Publication Type : Journal Article
Thematic Areas : Medical Sciences
Publisher : Cancer Microenviron
Source : Cancer Microenvironment, Springer New York LLC (2018)
Campus : Kochi
School : School of Medicine
Department : Biochemistry, Neurosurgery
Year : 2018
Abstract : Neurofibromatosis type 2 (NF-2) is associated with mainly three types of recurrent benign tumors restricted to the central nervous system: schwannoma, meningioma and ependymoma. The absence of the protein NF2/Merlin causes an uninterrupted cell proliferation cascade originating from an abnormal interaction between an extracellular mucopolysaccharide, hyaluronan (HA), and schwann cell surface CD44 receptor, which has been identified as one of the central causative factors for schwannoma. Most tumors in NF-2 have a predilection to originate from either arachnoid cap cells or schwann cells of the cisternal portion of nerve rootlets that share a continuous exposure to cerebrospinal fluid (CSF). We hypothesize that the CSF HA may play a role in tumorigenesis in NF-2. In a prospective analysis over a period of one year, the levels of medium to low molecular weight HA (LMW HA) was estimated in the CSF of three subjects with central schwannomas and compared against that of age-sex matched controls, using Cetyltrimethylammonium bromide coupled turbidimetric assay and found to be seventeen-fold higher in the schwannoma subjects compared to the controls. HA was observed to be actively secreted by cultured schwannoma cells isolated from tumor tissues commensurate with their proliferation rate. On cell viability index analysis to compare the cell proliferation of astrocytoma cells with LMW HA vs. oligomeric HA (OHA), we found a decrease in cell proliferation of up to 30% with OHA. The study provides initial evidence that CSF HA may have a central role in the tumorigenesis of schwannoma in NF-2.
Cite this Research Publication : P. S. Ariyannur, Vikkath, N., and Pillai, A. B., “Cerebrospinal Fluid Hyaluronan and Neurofibromatosis Type 2”, Cancer Microenvironment, 2018.