Back close

Comparative evaluation of classifiers for abnormal event detection in ATMs

Publisher : 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2017

Campus : Coimbatore

School : School of Engineering

Department : Electrical and Electronics

Year : 2018

Abstract : As the crime rates in the ATMs are increasing, a security system which detects abnormal events is the need of the hour. Several classifiers such as Random Forest, SVM and KNN are used for recognizing human actions. This paper intends to compare the effectiveness of all these methods for abnormal event detection in ATMs. Feature Extraction is done by HOG technique for all three classifiers. Based on the experimental results, it has been found that Random forest, with a detection accuracy of 96.4 %, is the most effective one. © 2017 IEEE.

Admissions Apply Now