Back close

Experimental investigation and exergy analysis on homogeneous charge compression ignition engine fueled with natural gas and diethyl ether

Publisher : Environmental Science and Pollution Research

Year : 2019

Abstract : In this work, diethyl ether (DEE) and compressed natural gas (CNG) port fuel injection (PFI) was investigated in direct injection (DI) compression ignition engine to determine the performance, combustion, and emission behaviors. In dual fuel mode, DEE and neat diesel were used as fuel energy, whereas in homogeneous charge compression ignition (HCCI) mode, DEE, and CNG were used as fuel energy. The engine behavior was analyzed for different inlet charge temperatures. Exergy analysis has been carried out for analyzing the various availability shares in the engine. The maximum brake thermal efficiency of the engine increased at peak load from 27.31% in neat diesel to 29.12% for dual fuel mode (D + CNG). Hydrocarbon and carbon monoxide emissions were reduced and oxides of nitrogen increased with the inlet charge heating mode. Maximum exergy efficiency was observed as 57.1% in dual fuel operation. The result of this work proves that CNG in dual and HCCI are effective for engine operation. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

Admissions Apply Now