Back close

Fabrication of MnS/GO/PANI nanocomposites on a highly conducting graphite electrode for supercapacitor application

Publication Type : Journal Article

Source : Materials Today Chemistry (2021)

Campus : Coimbatore

School : School of Engineering

Department : Sciences

Year : 2021

Abstract : We demonstrate a high surface area of manganese sulfide (MnS) nanoparticles via a simple solution method and investigated its morphology, physicochemical, and electrochemical studies. For the first time, we attempted to exploit the polymerization of aniline without adding HCl, as it is corrosive to the metal sulfide. Instead, the acidic group present on the graphene oxide surface plays a significant role to some extent as an acidic dopant in the polymerization process. This in-situ polymerization results in the uniform coverage of granular PANI on the entire MnS/GO nanocomposite, which enhances the interfacial interactions between PANI and MnS/GO nanoparticles. The introduction of graphene oxide (GO) to pristine MnS improved the specific capacitance, surface area, and average pore size. And incorporating PANI to MnS/GO leads to an increase in the interfacial interaction between the different pore sized nanoparticles giving enhanced specific capacitance. The specific capacitance for MnS/GO/PANI nanocomposite as measured by galvanostatic charge-discharge measurements was found to be 773 F/g at 1 A/g current density, and even at higher current density, it showed a specific capacitance of 484 F/g at 3.8 A/g. The specific capacitance obtained for MnS/GO/PANI nanocomposite from CV shows 822 F/g at 10 mV/s and 315 F/g at 200 mV/s. The combinatorial effects without destroying the metal sulfide nanostructure can provide an alternate route to design, promising electroactive nanocomposites is an ideal choice as a cost-effective, next-generation high-performance supercapacitor application.

Cite this Research Publication : Sudip Kumar Batabyal, Yasoda, K. Y., S. Kumar, Kumar, M. S., and Ghosh, K., “Fabrication of MnS/GO/PANI nanocomposites on a highly conducting graphite electrode for supercapacitor application”, 2021.

Admissions Apply Now