Back close

Information Processing via Post-synaptic EPSP-spike Complex and Model-based Predictions of Induced Changes during Plasticity in Cerebellar Granular Neuron

Publication Type : Conference Paper

Thematic Areas : Biotech, Learning-Technologies, Medical Sciences

Publisher : ACM Digital Library

Source : Proceedings of the 1st Amrita ACM-W Celebration of Women in Computing in India, A2CWiC'10, Coimbatore, Sept 16-17, 2010.

Url :

ISBN : 9781450301947

Keywords : Action Potentials, bioinformatics, Brain, cerebellum, Computational neuroscience, Computer simulation, Data processing, Electrophysiology, EPSP, Granulation, Granule cells, Plasticity

Campus : Amritapuri, Kochi

School : Center for Nanosciences, School of Biotechnology, School of Engineering

Center : Amrita Center for Nanosciences and Molecular Medicine Move, Amrita Mind Brain Center, Biotechnology, Computational Neuroscience and Neurophysiology, Nanosciences

Department : biotechnology, Computer Science, Nanosciences, Nanosciences and Molecular Medicine

Verified : Yes

Year : 2010

Abstract : Understanding functional role of spike bursts in the brain circuits is vital in analyzing coding of sensory information. Information coding in neurons or brain cells happen as spikes or action potentials and excitatory post-synaptic potentials (EPSPs). Information transmission at the Mossy fiber- Granule cell synaptic relay is crucial to understand mechanisms of signal coding in the cerebellum. We analyzed spiking in granule cells via a detailed computational model and computed the spiking-potentiation contributing to signal recoding in granular layer. Plasticity is simulated in the granule cell model by changing the intrinsic excitability and release probability of the cells. Excitatory post synaptic potentials and spikes on varying Golgi cell (GoC) inhibition and Mossy fiber(MF) excitation were analyzed simultaneously with the effect of induced plasticity changes based on the timing and amplitude of the postsynaptic signals. It is found that a set of EPSPs reaching maximum threshold amplitude are converted to less number of high amplitude EPSPs or spikes. Exploring the EPSP-spike complex in granular neurons reveal possible mechanisms and quantification of information encoding in individual neurons of the cerebellar granular layer. Therefore, our study is potentially an important estimation of cerebellar function. © 2010 ACM.

Cite this Research Publication : Nair, M., Melethadathil, N., Nair, B., & Diwakar, S. (2010). Information processing via post-synaptic EPSP-spike complex and model-based predictions of induced changes during plasticity in cerebellar granular neuron. Paper presented at the Proceedings of the 1st Amrita ACM-W Celebration of Women in Computing in India, A2CWiC'10, doi:10.1145/1858378.1858383

Admissions Apply Now