Back close

Interdigitated photoconductive terahertz antenna for future wireless communications

Publication Type : Journal Article

Publisher : Microwave and Optical Technology Letters

Source : Microwave and Optical Technology Letters, 1– 8, 2018

Url : https://onlinelibrary.wiley.com/doi/abs/10.1002/mop.33034

Campus : Chennai

School : School of Engineering

Department : Electronics and Communication

Year : 2021

Abstract : Recently, the technology buzz on utilization of terahertz (THz) technology in beyond 5G and 6G communication is growing due to the demands for large network capacity, bandwidth, and ultrahigh data rates. The THz frequencies are prudent for short-range future wireless communication systems as they provide extraordinary channel capacity with data rates from few Gb/s to Tb/s due to its ultra-wide spectrum bandwidth. However, there exists many challenges in designing devices that operate under THz frequencies. The photo-conductive antenna (PCA) is one of the crucial components that support realization of ultrafast wireless THz communications. In this paper, investigations on photoconductive antennas with interdigitated electrodes (IDEs) have been presented for THz communications with an equivalent circuit model for IPCA with corresponding solved expressions. The results show that the maximum THz field strength of 4.41 × 105 V/m is achievable by a 10 μm interdigitated teeth length IPCA with larger spectrum bandwidth of about ~8 THz. The antenna module makes the possibility of miniaturization of the THz sources and detectors for the emerging variety of wireless THz applications.

Cite this Research Publication : Rathinasamy, Vaisshale, Rama Rao Thipparaju, Nisha Flora Boby Edwin, and ShyamalMondal. "Interdigitated photoconductive terahertz antenna for future wireless communications." Microwave and Optical Technology Letters, 1– 8, 2018

Admissions Apply Now