Programs
- M. Tech. in Automotive Engineering -
- Fellowship In Interventional Pulmonology and Pulmonary Critical care - Fellowship
Publication Type : Journal Article
Publisher : Journal of Physics: Conference Series
Source : Journal of Physics: Conference Series, 638, 012002, 2015
Url : https://iopscience.iop.org/article/10.1088/1742-6596/638/1/012002
Campus : Coimbatore
School : School of Artificial Intelligence
Center : Center for Computational Engineering and Networking
Year : 2015
Abstract : We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.
Cite this Research Publication : Non-equilibrium thermodynamics and a fluctuation theorem for individual reaction steps in chemical reaction network, K. Pal, B. Das, K. Banerjee, and G. Gangopadhyay, Journal of Physics: Conference Series, 638, 012002, 2015