Programs
- M. Tech. in Automotive Engineering -
- Fellowship In Interventional Pulmonology and Pulmonary Critical care - Fellowship
Publication Type : Journal Article
Publisher : Applied Physics Letters
Source : Applied Physics Letters, Volume 81, Number 19, p.3618-3620 (2002)
Url : https://doi.org/10.1063/1.1519733
Campus : Coimbatore
School : School of Engineering
Department : Chemical
Year : 2002
Abstract : The kinetics of the interfacial layer (IL) growth between Hf aluminates and the Si substrate during high-temperature rapid thermal annealing (RTA) in either N2 (∼10 Torr) or high vacuum (∼2×10−5 Torr) is studied by high-resolution x-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy. The significant difference of the IL growth observed between high vacuum and relatively oxygen-rich N2 annealing (both at 1000 °C) is shown to be caused by the oxygen species from the annealing ambient. Our results also show that Hf aluminates exhibit much stronger resistance to oxygen diffusion than pure HfO2 during RTA in N2 ambient, and the resistance becomes stronger with more Al incorporated into HfO2. This observation is explained by the combined effects of (i) smaller oxygen diffusion coefficient of Al2O3 than HfO2, and (ii) higher crystallization temperature of the Hf aluminates.
Cite this Research Publication : H. Y. Yu, Wu, N., Li, M. F., Chunxiang Zhu, Byung Jin Cho, Kwong, D. - L., Tung, C. H., Pan, J. S., Chai, J. W., Wang, W. D., Chi, D. Z., Ang, C. H., Zheng, J. Z., and Dr. Sasangan Ramanathan, “Thermal Stability of (HfO2)x(Al2O3)1−x on Si”, Applied Physics Letters, vol. 81, pp. 3618-3620, 2002.