Back close

Fusion Transcripts in Cancer and the Potential to Inhibit by RNA Interference

Start Date: Thursday, Jul 01,2010

School: School of Nano Sciences

Project Incharge:Dr. Sujith Nair
Funded by:DBT
Fusion Transcripts in Cancer and the Potential to Inhibit by RNA Interference

Fusion transcripts are known to occur in cancerous cells across a range of cancers and might play important roles in the pathophysiology of cancer. In developing newer strategies to combat cancer, therapeutic knock down of fusion transcripts by RNA interference technology is being considered for its potential benefits in targeting cancerous cells.

The objectives of this project are to design small interfering RNAs (siRNA) against fusion transcripts in several cancer types with validation of specificity of these siRNAs in achieving therapeutic knock down of fusion transcripts resulting in better therapeutic outcomes for cancer progression and metastatic phenotypes.

Several projects are focused on the development of nanomedicines for application in cancer therapeutics, drug delivery for infectious diseases and also for regeneration of tissues using nanostructured scaffolds. Some of the tissues studied are bone, cartilage, cardiac tissue, vascular tissue and liver tissue. A wide range of natural polymeric nanostructured materials and bioceramics are being investigated for such applications.

Related Projects

Theragnostics, Re-generative Medicine and Stem Cell Using Cell-Targeted Nano-material
Theragnostics, Re-generative Medicine and Stem Cell Using Cell-Targeted Nano-material
Combining Solar Cells with Supercapacitors and Batteries Integrated Nanomaterial based Photovoltaic Storage Devices
Combining Solar Cells with Supercapacitors and Batteries Integrated Nanomaterial based Photovoltaic Storage Devices
Center for Excellence on Integrated Nanomaterial based Photovoltaic Storage Devices
Center for Excellence on Integrated Nanomaterial based Photovoltaic Storage Devices
Identification of New Autoantigens in Rheumatold Arthritis using an Unbiased Clinical Proteomics Approach
Identification of New Autoantigens in Rheumatold Arthritis using an Unbiased Clinical Proteomics Approach
Electro Nanoprocessing of Semiconductor Nanotube Arrays for High Efficiency Photovoltaics
Electro Nanoprocessing of Semiconductor Nanotube Arrays for High Efficiency Photovoltaics
Admissions Apply Now