Back close

Use of Drones to Effectively Rescue Trapped Victims in Collapsed Buildings

Start Date: Wednesday, Sep 27,2023

Co-Project Incharge:Sethuraman Rao
Funded by:Amrita Seed Grant, Amrita Vishwa Vidyapeetham

Duration :  1 Year

Project Incharge :  Sai Shibu N. B.

Use of Drones to Effectively Rescue Trapped Victims in Collapsed Buildings

Natural and man-made disasters have devastating consequences, leading to the loss of both life and property. Regrettably, one of the major challenges faced during such catastrophic events is the slow rescue process, which often contributes to increased casualties. To address this critical issue, this project aims to develop a multi-modal rescue-assist system using IoT-based Mobile Rescue Assist Platforms (MoRAP) for search and rescue missions. The system focuses on improving the efficiency and effectiveness of rescue operations, reducing response time, and ensuring public safety. The system architecture consists of autonomous aerial and terrestrial platforms, including AeMoRAP (Autonomous aerial Mobile Rescue Assist Platform), TeMoRAP (Terrestrial Mobile Rescue Assist Platform), smart building controllers, ground control station (GCS), and emergency monitoring station (EMS). These components collect real-time visual information sensor data and perform data analysis for informed decision-making.

Project Goals:

  • Involvement of Modular Aerial and Terrestrial Mobile Rescue Assist Platforms (MoRAP) in SAR. 
  • Multimodal SAR Architecture with edge computing capabilities to handle data acquisition and analysis. 
  • Mesh-capable heterogeneous communication architecture for SAR assist. 
  • Dynamic Decision Algorithm to estimate the optimal route to reach the victims in minimal time.

Project Members

Related Projects

Women in Sustaining the Environment Phase 2: Water Quality Monitoring Project
Women in Sustaining the Environment Phase 2: Water Quality Monitoring Project
Machine Fault Identification : A Unified Approach
Machine Fault Identification : A Unified Approach
Non-Invasive Real-Time Monitoring of Blood Pressure and Blood Glucose through Photoplethysmography leveraging IoMT and AI 
Non-Invasive Real-Time Monitoring of Blood Pressure and Blood Glucose through Photoplethysmography leveraging IoMT and AI 
Value addition to seabukthorn through isolation & characterisation of pharmacologically active compounds
Value addition to seabukthorn through isolation & characterisation of pharmacologically active compounds
Investigation on Effect of Space Radiations on Space Durable Polymeric Nano Composite for Future Generation Space Missions
Investigation on Effect of Space Radiations on Space Durable Polymeric Nano Composite for Future Generation Space Missions
Admissions Apply Now