Back close

An Intelligent Controller to Regulate the Speed of Hybrid Stepper Motor

Publication Type : Conference Paper

Publisher : International Conference on Advancements in Automation, Robotics and Sensing (ICAARS 2016)

Source : International Conference on Advancements in Automation, Robotics and Sensing (ICAARS 2016), 23-24 June 2016, Coimbatore., p.1-6 (2016)

Campus : Coimbatore

School : School of Engineering

Department : Electrical and Electronics

Year : 2016

Abstract : This paper presents an implementation of the brain emotional learning-based intelligent controller (BELBIC) for precise speed tracking of the hybrid stepper motor (HSM). Such a configuration is applicable where high resolution and accuracy is essential particularly in uncertain conditions. The proposed controller is a model-free controller independent of the model dynamics and variations that occur in a system. It is capable of autolearning to handle unforeseen disturbances. To evaluate the performance of the BELBIC controller in realistic conditions, the uncertainty of the system as a result of mechanical parameter variation and load torque disturbance is considered. To verify an excellent dynamic performance and the feasibility of the BELBIC, the system is simulated in MATLAB Simulink, and the results of the simulation are compared with an optimized proportional integral (PI) controller. The simulation results confirm the superior performance of the BELBIC for fast and precise speed response as well as its potential in dealing with nonlinearity and uncertainty handling as compared with that of the PI controller. The proposed controller is used in realistic applications, such as tunable-laser system and robot-assisted surgery.

Cite this Research Publication : P. Somarajan, G., P., and Ilango Karuppasamy, “An Intelligent Controller To Regulate The Speed Of Hybrid Stepper Motor”, in International Conference on Advancements in Automation, Robotics and Sensing (ICAARS 2016), 23-24 June 2016, Coimbatore., 2016, pp. 1-6.

Admissions Apply Now