Programs
- M. Tech. in Automotive Engineering -
- Fellowship in Infectious Diseases Adult & Pediatric ID - Fellowship
Publication Type : Journal Article
Publisher : De Gruyter
Source : Current Directions in Biomedical Engineering Volume 7 Issue 2 Pages 747-750, 2021
Url : https://www.degruyter.com/document/doi/10.1515/cdbme-2021-2191/html
Campus : Coimbatore
School : School of Artificial Intelligence
Department : Center for Computational Engineering and Networking (CEN)
Year : 2021
Abstract : Computer-assisted tools can aid in the detection of Alzheimer disease (AD)which isa progressive neurodegenerative disorder that can lead to cognitive impairments and eventually death. The accumulated effects due to AD can cause changes in the appearance of grey matter, white matter and cerebrospinal fluid in brainMagnetic Resonance (MR) images. This study aims to use Kernel Density Estimation (KDE) technique to analyse the textural changes from single slice brain MR images for the detection of AD. The preprocessed, skull stripped T1-weighted MR brain images are obtained from the publicly available OASIS database. A single axial slice per subject is chosen from a volumetric image for further processing to reduce the computational load. Multivariate KDE technique is applied to each pixel,by considering the changes in the neighbourhood based onselectedbandwidth to obtain corresponding density estimates. Statistical features quantifying the distribution of density estimates are extracted to characterise textural variations in images. Linear discriminant analysis (LDA) classifier is implemented with ten-fold cross-validation for detecting AD. An optimum bandwidth of 18 for the KDE technique is selected based on the classification performance. Out of seven extracted texture features, three are found to be statistically significant in distinguishing AD. The classification with LDA yields an accuracy of 72.3% with a sensitivity of 80.6% for identifying AD from healthy subjects. The proposed method is efficient in detecting AD by revealing the textural changes within the brain slice without the involvement of any segmentation technique. Thus, the novel KDE-based texture analysis proves to be an effective tool for the automated diagnosis of AD from single slicebrain MR images.
Cite this Research Publication : Amrutha Veluppal, Deboleena Sadhukhan, Venugopal Gopinath, Ramakrishnan Swaminathan, "Automated differentiation of Alzheimer’s condition using Kernel Density Estimation based texture analysis of single slice brain MR images",