Programs
- M. Tech. in Automotive Engineering -
- Fellowship In Interventional Pulmonology and Pulmonary Critical care - Fellowship
Publication Type : Conference Paper
Publisher : IEEE
Source : 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 2021, pp. 227-232 doi: 10.1109/RTEICT52294.2021.9573971.
Url : https://ieeexplore.ieee.org/document/9573971
Campus : Coimbatore
School : School of Engineering
Year : 2021
Abstract : Early diagnosis and characterization are the important components in determining the treatment of chronic kidney disease (CKD). CKD is an ailment which tends to damage the kidney and affect their effective functioning of excreting waste and balancing body fluids. Some of the complications included are hypertension, anemia (low blood count), mineral bone disorder, poor nutritional health, acid base abnormalities, and neurological complications. Early and error-free detection of CKD can be helpful in averting further deterioration of patient's health. These chronic diseases are prognosticated using various types of data mining classification approaches and machine learning (ML) algorithms. This Prediction is performed using Random Forest (RF) Classifier, Logistic Regression (LR) and K-Nearest Neighbor (K-NN) algorithm and Support Vector Machine (SVM). The data used is collected from the UCI Repository with 400 data sets with 25 attributes. This data has been fed into Classification algorithms. The experimental results show that K-NN, LR, SVM hands out an accuracy of 94%, 98% and 93.75% respectively. The RF classifier gives out a maximum accuracy of 100%
Cite this Research Publication : G. Nandhini and J. Aravinth, "Chronic kidney disease prediction using machine learning techniques," 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 2021, pp. 227-232 doi: 10.1109/RTEICT52294.2021.9573971.