Publication Type : Journal Article
Publisher : Distributed Generation Alternative Energy Journal
Source : Distributed Generation & Alternative Energy Journal , Volume 31, Issue 4, p.27-49 (2016)
Url : https://www.tandfonline.com/doi/abs/10.1080/21563306.2016.11781079
Campus : Bengaluru
School : School of Engineering
Department : Electrical and Electronics
Year : 2016
Abstract : This article deals with nonlinear control of variable speed wind turbine (VSWT), where the dynamics of the wind turbine (WT) is obtained from a single mass model. The main objective of this work is to maximize the energy capture form the wind with reduced oscillation on the drive train. The generator torque is considered as the control input to the WT. In general the conventional control techniques such as Aerodynamic Torque Feed-Forward (ATF) and Indirect Speed Control (ISC) are unable to track the dynamic aspect of the WT. To overcome the above drawbacks the nonlinear controllers such Sliding Mode Controller (SMC) and SMC with integral action (ISMC) with the estimation of effective wind speed are proposed. The Modified Newton Raphson (MNR) is used to estimate the effective wind speed from aero dynamic torque and rotor speed. The proposed controller is tested with different wind profiles with the presence of disturbances and model uncertainty. From the results the proposed controller was found to be suitable in maintaining a trade-off between the maximum energy capture and reduced transient on the drive train. Finally both the controllers are validated by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) WT simulator.
Cite this Research Publication : R. Saravanakumar and Jena, D., “Control Strategy to Maximize Power Extraction in Wind Turbine”, Distributed Generation & Alternative Energy Journal , vol. 31, no. 4, pp. 27-49 , 2016.