Programs
- M. Tech. in Automotive Engineering -
- Fellowship In Interventional Pulmonology and Pulmonary Critical care - Fellowship
Publication Type : Conference Proceedings
Publisher : AIP Conference Proceedings
Source : AIP Conference Proceedings, American Institute of Physics Inc., Volume 1859 (2017)
ISBN : 9780735415331
Campus : Bengaluru
School : School of Engineering
Department : Mechanical Engineering
Year : 2017
Abstract : Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 μm to 30 μm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not lose its strength even number of years of use. Dirty coolant is fed from the machines in to the reservoir of the coolant filter either by a pump or taken by the gravity and flows under the tray. This attracts the ferrous particles and builds up a cake of ferrous material and finally taken away by the scraper. The moving permanent magnets mounted on the shaft attracts ferrous chips and slide them on to plate and then to the discharge end or sludge bin. The coolant separated from chips flow back to the coolant tank. Well in this fast changing growth of metal working operation the recycling of cutting fluids become very important for the management of coolant. With the help of this developed model of magnetic coolant separator we can get highly efficient way of filtration guarantying fine finish, dimensional accuracy and increased tool life. The most significant role of this filter is that, it will reduce the waste disposal of coolant and a net profit for the production industries. © 2017 Author(s).
Cite this Research Publication : B. N. Prashanth, “Design and fabrication of magnetic coolant filter”, AIP Conference Proceedings, vol. 1859. American Institute of Physics Inc., 2017.