Back close

Enhanced lymphatic uptake of leflunomide loaded nanolipid carrier via chylomicron formation for the treatment of rheumatoid arthritis

Publisher : Advanced Pharmaceutical Bulletin

Campus : Kochi

School : School of Pharmacy

Year : 2018

Abstract :

Purpose: The current study aims the lymphatic delivery of leflunomide loaded nanostructured lipid carriers (LNLC) for the treatment of rheumatoid arthritis, mainly focussed to enhance the lymphatic delivery via chylomicron formation, improved bioavailability and reduced systemic toxicity. Methods: Melt emulsification ultra-sonication method was used to formulate the nanostructured lipid carrier (NLC) containing leflunomide. Four batches were prepared by using various concentration of surfactants (tween 80 and poloxmer 188) and lipid mixtures (stearic acid and oleic acid). All the formulations were studied for various physiochemical properties Results: The formulation with increased concentration of lipid and surfactants showed highest entrapment efficiency (93.96 ± 0.47%) and better drug release (90.35%) at the end of 48 hrs. In vivo tests were carried out to determine the antiarthritic potential of the formulation in Sprague-dawley rats for a duration of 30d. The effect was evaluated by measuring the reduction in knee thickness. LNLC showed a marked reduction in inflammation compared to standard drug. Intestinal lymphatic uptake studies of LNLC were performed by intraduodenal administration and compared with leflunomide drug solution. The mesenteric lymph node was analysed by HPLC method and the concentration of drug was estimated. It showed that LNLC having highest uptake (40.34μg/ml) when compared with leflunomide drug solution (10.04μg/ml). Radiographic analysis and histopathological studies showed the formation of healthy cartilage after treatment period. Conclusion: The results suggested that LNLC has the potential to reduce the systemic toxicities associated with conventional therapy along with improved efficacy in the treatment of rheumatoid arthritis. © 2018 The Authors.

Admissions Apply Now